

Anchor Fastening Technology Manual

Hilti HIT-HY 170 Injection mortar

Version 2015-05

Hilti HIT-HY 170 mortar for masonry

Injection mortar system		Benefits
	Hilti HIT-HY 170 500 ml foil pack (also available as 330 ml foil pack)	 chemical injection fastening for the most common types of base materials: hollow and solid clay and calcium silicate bricks two-component hybrid mortar
	Mixer	 versatile and convenient handling featuring HDE dispenser mortar filling control with HIT-SC sleeves
	HIT-V rod	 In-service temperatures: short term: max. 80°C long term: max. 50°C
	HIT-IC internally threaded sleeve	
	HIT-SC composite sleeve	

Solid brick

Hollow brick

Corrosion resistance High corrosion resistance

European Technical Approval

CE conformity

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European Technical Assessment	DIBt, Berlin	ETA-15/0197 / 2015-04-28

Brick types and properties

Instruction to this technical data

- Identify/choose your brick (or brick type) and its geometrical/physical properties on the following tables.
- The pages referred on the last column of the table below contain the design resistance loads for pull-out failure of the anchor, brick breakout failure and local brick failure for each respective brick. Notice that the data displayed on these tables is only valid for single anchors with distance to the edge bigger or equal to $c_{cr} = c_{min} -$ for other cases not covered, please contact Hilti Engineering Team.
- The resistance loads provided by this technical data manual are valid only for the exact same masonry unit (hollow bricks) or for units made of the same base material with equal or higher size and compressive strength (solid bricks). For other cases, on-site tests must be performed please consult page 9.

Interior dimensions of the majority of the holes

Brick code	Data	Brick name	Image	Size [mm]	t _o [mm]	t _i [mm]	a [mm]	f _b [N/mm²]	ρ [kg/dm³]	Page
				Solid Cla	ay					
SC	ETA	Solid clay brick Mz, 2DF		l: ≥240 b: ≥115 h: ≥113	-	-	-	12	2,0	7
	Hollow Clay									
НС	ETA	Hollow clay brick Hlz, 10DF		l: 300 b: 240 h: 238	t ₀₁ : 12 t ₀₂ : 15	t _{l1} : 11 t _{l2} : 15	a ₁: 10 a₂ : 25	12/20	1,4	7
			Solie	d Calcium	Silicate					
SCS	ETA	Solid silica brick KS, 2DF		l: ≥240 b: ≥115 h: ≥113	-	-	-	12/28	2,0	7
	Hollow Calcium Silicate									
HCS	ETA	Hollow silica brick KSL, 8DF		l: 248 b: 240 h: 238	t₀₁: 34 t₀₂: 21	t _{l1} : 12 t _{l2} : 30	a ₁: 50 a₂ : 50	12/20	1,4	7

Anchor installation parameters

Brick position:

- Header (H): The longest dimension of the brick represents the width of the wall
- Stretcher (S): The longest dimension of the brick represents the length of the wall

Spacing and edge distance:

- c Distance to the edge
- s_{\parallel} Spacing parallel to the horizontal joint
- s1- Spacing perpendicular to the horizontal joint

Minimum and characteristic spacing and edge distance parameters

- c_{min} Minimum edge distance
- c_{cr} Characteristic edge distance
- s_{min ||} Min. spacing distance parallel to the bed joint
- s_{cr ||} Characteristic spacing distance parallel to the bed joint
- s_{min} Min. spacing distance perpendicular to the bed joint
- s_{cr} Characteristic spacing distance perpendicular to the bed joint

Allowed anchor positions: $\geq c_{res} = c_{res}$

• This FTM includes the load data for single anchors in masonry with a distance to the edge bigger or equal to the characteristic edge distance.

Anchor dimensions

Anchor size Threaded rod HIT-V, HIT-V-R, HIT-V-HCR	M8	M10	M12
Embedment depth h _{ef} [mm]		80	
Anchor size Internally threaded sleeve HIT-IC	M8x80	M10x80	M12x80
Embedment depth h _{ef} [mm]	80		

Design

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: ETAG 029, Annex C, Design method A.

Basic loading data (for a single anchor)

The load tables provide the design resistance load for a single loaded anchor.

All data in this section applies to

- Edge distance $c \ge c_{cr} = c_{min}$.
- Correct anchor setting (see instruction for use, setting details)

Anchorages subject	to:	Hilti HIT-HY 170 with HIT-V or HIT-IC			
		in solid bricks	in hollow bricks		
Hole drilling		hammer mode	rotary mode		
Use category: dry or w	vet structure	Category d/d - Installation and use in structures subject to dry , internal conditions, Category w/d - Installation in dry or wet substrate and use in structures subject to dry , internal conditions, Category w/w - Installation and use in structures subject to dry or wet environmental conditions.			
Installation direction Masonry		horizo	ntal		
Temperature in the base material at installation		+5° C to +40° C	-5° C to +40° C		
In-service temperature	Temperature range Ta:	-40 °C to +40°C (ma max	x. long term temperature +24°C and k. short term temperature +40 °C)		
	Temperature range Tb:	-40 °C to +80°C (ma max	x. long term temperature +50°C and k. short term temperature +80 °C)		

Tension loading

The design tensile resistance is the lower value of

- Steel resistance:	N _{Rd,s}
- Pull-out of the anchor:	N _{Rd,p}
- Brick breakout failure:	N _{Rd,b}

Pull out of one brick N_{Rd,pb}

Shear loading

The design shear resistance is the lower value of

- Steel resistance: $V_{Rd,s}$
- . Local brick failure: $V_{Rd,b}$
- Pushing out of one brick: $V_{Rd,pb}$

Design tension and shear resistances – Steel failure for threaded rods HIT-V

Ancho	r size		M8	M10	M12
	HIT-V 5.8(F)	[kN]	12,0	19,3	28,0
N	HIT-V 8.8(F)	[kN]	19,3	30,7	44,7
INRd,s	HIT-V-R	[kN]	13,9	21,9	31,6
	HIT-V-HCR	[kN]	19,3	30,7	44,7
	HIT-V 5.8(F)	[kN]	7,2	12,0	16,8
	HIT-V 8.8(F)	[kN]	12,0	18,4	27,2
V Rd,s	HIT-V-R	[kN]	8,3	12,8	19,2
	HIT-V-HCR	[kN]	12,0	18,4	27,2
	HIT-V 5.8(F)	[kN]	15,2	29,6	52,8
${\sf M}^0_{\rm Rd,s}$	HIT-V 8.8(F)	[kN]	24,0	48,0	84,0
	HIT-V-R	[kN]	16,7	33,4	59,1
	HIT-V-HCR	[kN]	24,0	48,0	84,0

Design tension and shear resistances – Steel failure for internally threaded rods HIT-IC

Ancho	or size		M8	M10	M12
N _{Rd,s}	HIT-IC	[kN]	3,9	4,8	9,1
V	HIT-V 5.8	[kN]	7,2	12,0	16,8
V Rd,s	Screw 8.8	[kN]	12,0	18,4	27,2
NA ⁰	HIT-V 5.8	[kN]	15,2	29,6	52,8
IVI Rd,s	Screw 8.8	[kN]	24,0	48,0	84,0

Design tension and shear resistances – Pull-out failure of the anchor, brick breakout failure and local brick failure at characteristic edge distance ($c \ge c_{cr} = c_{min}$) for single anchor applications

				4	w/w ai	nd w/d	d/	d
Load type Anchor size		Imm]	T _b [N/mm²]	Та	Tb	Та	Tb	
				[,]		Loads	s [kN]	
	SC - Solid clay b	rick						
	Mz, 2DF							
	HIT-V	M8, M10, M12			1,2	1,0	1,2	1,0
	HIT-IC	M8			1,2	1,0	1,2	1,0
$\mathbf{N}_{\mathrm{Rd},\mathrm{p}} = \mathbf{N}_{\mathrm{Rd},\mathrm{b}}$	HIT-IC	M10, M12	80	12	1,6	1,4	1,6	1,4
$(C_{cr} - C_{min} - 11311111)$	HIT-V + HIT-SC	M8, M10, M12			1,6	1,4	1,6	1,4
	HIT-IC + HIT-SC	M8, M10, M12			1,6	1,4	1,6	1,4
	HIT-V	M8, M10, M12						
V _{Rd,b}	HIT-V + HIT-SC	M8, M10, M12	80	12	1,4	1,4	1,4	1,4
$(C_{cr} = C_{min} = 115 \text{mm})$		M8, M10, M12 M8, M10, M12						
HC - Hollow clay brick HIz, 10DF								
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	12	1,2	1,0	1,2	1,0
$(c_{cr} = c_{min} = 150 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	20	1,4	1,2	1,4	1,2
V _{Rd,b}	HIT-V + HIT-SC	M8, M10, M12	80	12	0,8	0,8	0,8	0,8
$(c_{cr} = c_{min} = 150 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	80	20	1,2	1,2	1,2	1,2
	SCS - Solid silica	a brick						
	K5, 20F		1					
	HIT-V	M8, M10, M12		12	2,2	2,0	2,4	2,0
$N_{Rd,p} = N_{Rd,b}$		1010,10110, 10112	80	28	3,4	3,0	3,4	3,0
$(C_{cr} = C_{min} = 115 \text{ mm})$	HIT-V + HIT-SC	M8, M10, M12		12	1,6	1,4	2,2	2,0
	HIT-IC + HIT-SC	M8, M10, M12		28	2,4	2,2	3,2	3,0
$V_{Rd,b}$	HIT-V HIT-V + HIT-SC	M8, M10, M12 M8, M10, M12		12	1,6	1,6	1,6	1,6
$(c_{cr} = c_{min} = 115 \text{ mm})$	HIT-IC	M8, M10, M12	80					
	HIT-IC + HIT-SC	M8, M10, M12		28	2,4	2,4	2,4	2,4
	HCS - Hollow sili	ca brick						
	KSL, 8DF							
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	12	1,2	1,0	1,4	1,2
$(c_{cr} = c_{min} = 125 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	20	1,6	1,4	2,0	1,8
V _{Rd,b}	HIT-V + HIT-SC	M8, M10, M12	80	12	3,4	3,4	3,4	3,4
$(c_{cr} = c_{min} = 125 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	80	20	4,8	4,8	4,8	4,8

Design tension and shear resistances – Pull out and pushing out of one brick failures

Pull out of one brick (tension):

 $N_{\mathrm{Rd,pb}} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000) \ [\text{kN}]$

$$\begin{split} N_{Rd,pb}{}^{*} = & (2 \cdot I \cdot b \cdot (0,5 \cdot f_{vko} + 0,4 \cdot \sigma_d) + b \cdot h \cdot f_{vko}) / (2,5 \cdot 1000) \quad [kN] \\ {}^{*} \text{ this equation is applicable if the vertical joints are filled} \end{split}$$

Pushing out of one brick (shear):

 $V_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000) [kN]$

 σ_d = design compressive stress perpendicular to the shear (N/mm²) f_{vko} = initial shear strength according to EN 1996-1-1, Table 3.4

Brick type	Mortar strength	f _{vko} [N/mm²]
Clay brick	M2,5 to M9	0,20
	M10 to M20	0,30
All other types	M2,5 to M9	0,15
	M10 to M20	0,20

On-site test

For other bricks in solid or hollow masonry, not covered by the Hilti HIT-HY 170 ETA or this technical data manual, the characteristic resistance may be determined by on-site tension tests (pull-out tests or proof-load tests), according to ETAG029, Annex B.

For the evaluation of test results, the characteristic resistance may be obtained taking into account the β factor, which considers the different influences of the product.

The β factor for the brick types covered by the Hilti HIT-HY 170 ETA is provided on the following table:

Use categories		w/w and w/d		d/d	
Temperature range		Ta*	Tb*	Ta*	Tb*
Base material	Elements				
	HIT-V or HIT-IC				
Solid clay brick	HIT-V + HIT-SC	0,97	0,83	0,97	0,83
	HIT-IC + HIT-SC				
	HIT-V or HIT-IC	0,96	0,84	0,97	0,84
Solid calcium silicate brick	HIT-V + HIT-SC	0.69	0,62	0,91	0.82
	HIT-IC + HIT-SC	- 0,00			0,02
Hollow clay brick	HIT-V + HIT-SC	0.97	0.83	0.07	0.83
Hollow clay blick	HIT-IC + HIT-SC	0,37	0,00	0,97	0,00
Hollow calcium silicato brick	HIT-V + HIT-SC	0.69	0.62	0.01	0.82
Hollow calcium silicate drick	HIT-IC + HIT-SC	0,03	0,02	0,91	0,02

*Ta / Tb, w/w and d/d anchorage parameters, as defined on Table page 5

Applying the β factor from the table above, the characteristic tension resistance N_{Rk} can be obtained. Characteristic shear resistance V_{Rk} can also be directly derived from N_{Rk}. For detailed procedure consult ETAG 029, Annex B.

Materials

Material quality HIT-V

Part	Material
Threaded rod	Strength class 5.8, $A_5 > 8\%$ ductile
HIT-V-5.8(F)	Electroplated zinc coated \ge 5 μ m; (F) Hot dip galvanized \ge 45 μ m
Threaded rod	Strength class 8.8, $A_5 > 8\%$ ductile
HIT-V-8.8(F)	Electroplated zinc coated \geq 5 μ m; (F) Hot dip galvanized \geq 45 μ m
Threaded rod Stainless steel grade A4 $A_5 > 8\%$ ductile strength class 70, 1.4401;	
HIT-V-R	1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Threaded rod	High corrosion resistant steel, $A_5 > 8\%$ ductil
HIT-V-HCR	1.4529, 1.4565
	Electroplated zinc coated, hot dip galvanized
Washer	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	High corrosion resistant steel 1.4529, 1.4565
	Strength class 8
	Electroplated zinc coated \ge 5 μ m
	Hot dip galvanized \ge 45 μ m
Hexagon nut	Strength class 70
	Stainless steel grade A4 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Strength class 70
	High corrosion resistant steel 1.4529, 1.4565

Material quality HIT-IC

Part	Material
Internally threaded sleeve HIT-IC	A_5 > 8% ductile Electroplated zinc coated \ge 5 μ m

Material quality HIT-SC

Part	Material
Sieve sleeve HIT-SC	Frame: Polyfort FPP 20T Sieve: PA6.6 N500/200

Base materials:

- Solid brick masonry. The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- Hollow brick masonry
- Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2: 2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by on-site tests according to ETAG 029, Annex B under consideration of the β-factor according to Table page 9.

Setting

Installation equipment

Anchor size	M8	M10	M12				
Rotary hammer	TE2(A) – TE30(A)						
Other tools	blow out pump, set of cleaning brushes, HDE/HDM dispenser						

Maximum working time and minimum curing time

Temperature in the base material T	Maximum working time twork	Minimum curing time t _{cure}
-5 °C to 0 °C *	10 min	12 h
> 0 °C to 5 °C *	10 min	5 h
> 5 °C to 10 °C	8 min	2,5 h
> 10 °C to 20 °C	5 min	1,5 h
> 20 °C to 30 °C	3 min	45 min
> 30 °C to 40 °C	2 min	30 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled. * For hollow bricks only.

Installation instructions

Anchor installation should be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hole drilling

If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position

Drilling mode

	In hollow bricks: rotary mode Drill hole to the required embedment depth with a hammer drill set in rotation mode using an appropriately sized carbide drill bit.
do transformed and the second se	In solid bricks: hammer mode Drill hole to the required embedment depth with a hammer drill set in hammer mode using an appropriately sized carbide drill bit.

Drill hole cleaning	Just before setting the anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.
Manual Cleaning (MC)	or Compressed Air Cleaning (CAC) for hollow and solid bricks
2X	Blow out at least 2 times from the back of the drill hole with the Hilti hand pump until return air stream is free of noticeable dust.
2x 35,	Brush 2 times with the specified steel brush by inserting the steel brush Hilti HIT- RB to the back of the hole in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
2x	Blow out again with the Hilti hand pump at least 2 times until return air stream is free of noticeable dust.

Injection preparation in masonry with holes or voids: installation with sieve sleeve HIT-SC

Sieve sleeve HIT-SC Close lid

Insert sieve sleeve manual.

For all applications

Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle. Observe the instruction for use of the dispenser and foil pack. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.
Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are 2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack.

Inject adhesive without forming air voids

Installation with sieve sleeve HIT-SC

Sieve sleeve HIT-SC

Insert mixer approximately 1 cm through the lid. Adhesive must emerge through the lid.

Control amount of injected mortar. Adhesive has to protrude into the lid.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Solid bricks: installation without sieve sleeve

	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the anchor and the base material is completely filled with adhesive along the embedment length. After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.
Setting the element:	Before use, verify that the element is dry and free of oil and other contaminants.
	HIT-V or HIT-IC in hollow and solid bricks: Pre-setting: Mark and set element to the required embedment depth until working time t _{work} has elapsed.

Loading the anchor

Applications for hollow and solid bricks with sieve sleeves

Hollow brick with threaded rod HIT-V or internally threaded sleeve HIT-IC and sieve sleeve HIT-SC

Installation parameters of HIT-V-... with sieve sleeve HIT-SC in hollow brick or solid brick

Threaded rods and HIT-V	autonomu (Ba		M8	M10	M12
with HIT-SC	-		162	16x85	
Nominal diameter of drill bit	d ₀	[mm]	16	16	18
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	16	18
Number of strokes HDM	-	[-]	6	6	8
Number of strokes HDE 500-A	-	[-]	5	5	6
Maximum torque moment	T _{max}	[Nm]	3	4	6

Installation parameters of HIT-IC with sieve sleeve HIT-SC in hollow brick or solid brick

Internally threaded sleeve HIT-IC			M8x80	M10x80	M12x80
with HIT-SC	2	*####	16x85	18x85	22x85
Nominal diameter of drill bit	d ₀	[mm]	16	18	22
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Thread engagement length	h _s	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	18	22
Number of strokes HDM	-	[-]	6	8	10
Number of strokes HDE-500	-	[-]	5	6	8
Maximum torque moment	T_{max}	[Nm]	3	4	6

Applications for solid bricks without sieve sleeves

Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.

Solid brick with threaded rod HIT-V

Installation parameters of threaded rods and HIT-V in solid brick

Threaded rods and HIT-V		mBm	M8	M10	M12
Nominal diameter of drill bit	d ₀	[mm]	10	12	14
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	10	12	14
Maximum torque moment	T _{max}	[Nm]	5	8	10

Solid brick with internally threaded sleeve HIT-IC

Installation parameters of internally threaded sleeve HIT-IC in solid brick

Internally threaded sleeve HIT-IC			M8x80	M10x80	M12x80
Nominal diameter of drill bit	d ₀	[mm]	14	16	18
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Thread engagement length	h _s	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	14	16	18
Maximum torque moment	T_{max}	[Nm]	5	8	10