

Installation Technical Manual

Technical data

MQ System Light & Project

Terms of common cooperation / Legal disclaimer

The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User` s specific jurisdiction and project requirements.

Content and overview of this manual

Product	Designation	Item number	Page
MQ Sy	stem L&P channels	s - section prope	erties
A CONTRACTOR	MQ-21 2m MQ-21 3m MQ-21 6m	2148545 2148544 2148543	5
	MQ-41-L 2m MQ-41-L 3m MQ-41-L 6m	2141966 2141965 2141964	5
MQ System L&	P parts and connect	tors - loading ca	pacity limits
	MQA-S M8 MQA-S M10	2141906 2141907	7
	MQZ-P9 MQZ-P11	2141908 2141909	11
	MQZ-TW-M8 MQZ-TW-M10	2142030 2142031	15
	MQW-L-1/1	2142020	21
2 2	MQW-L-2/1	2142021	25
	MQW-H2	2141929	29
	MQP-L-6/2	2141928	33
	MQP-41	2141927	39
	Through bolt M8	Various see BOM	47
	Through bolt M10	Various see BOM	51

Content and overview of this manual

Product	Designation	Item number	Page
MQ System L&	P parts and connect	ctors - loading ca	pacity limits
	HHK 41 M8X40 HHK 41 M8X50 HHK 41 M8X60 HHK 41 M8X80 HHK 41 M8X100 HHK 41 M8X120 HHK 41 M8X150	312361 312362 312363 312365 312365 312367 312368 312369	55
J	HHK 41 M10X40 HHK 41 M10X60 HHK 41 M10X80 HHK 41 M10X100 HHK 41 M10X150	312371 312373 312374 312375 312375 312377	59
	MQK-L-21/200 MQK-L-21/300 MQK-L-21/450	2141924 2141925 2141926	63
	HUS3-H8 Direct fixation to concrete	Various	77
	HST3-M10 Direct fixation to concrete	Various	83

MQ System L&P - Ch	nannels	\$		
Designation		Item number		Yield strength 1.1 Material safety factor
MQ-21 2m		2148545	,	1.4
MQ-21 3m MQ-21 6m		2148544 2148543	,	Permissible stress Recommended capacity limit
MQ-41-L 2m		2141966		Self weight
MQ-41-L 3m		2141965		
MQ-41-L 6m		2141964	NO 04	Action Resistance
Technical data			MQ-21	MQ-41-L
For girder MI / cross section including torsion				
Cross-sectional area	А	[mm ²]	182.12	199.57
Channel weight		[kg/m]	1.43	1.6
Wall thickness		[mm]	2.0	1.5
Material				
yield strength	$\mathbf{f}_{\mathbf{y},\mathbf{k}}$	[N/mm ²]	290	290
permissible stress*	$\sigma_{_{rec}}$	[N/mm ²]	188.3	188.3
E-module		[N/mm ²]	210000	210000
Surface				
hot dip galvanized		[µm]	approx. 20	approx. 10
Cross-section values Y-axis				
Axis of gravity A	e ₁	[mm]	11.13	21.44
Axis of gravity B	e ₂	[mm]	9.47	19.86
moment of inertia	l _y	[cm ⁴]	0.99	4.48
Section modulus A	W _{y1}	[cm ³]	0.89	2.09
Section modulus B	W_{y2}	[cm ³]	1.05	2.25
Radius of gyration	i _y	[cm]	0.74	1.50
Permissible moment	My	[Nm]	168	394
Cross-section values Z-axis				
moment of inertia	ا _z	[cm ⁴]	4.63	5.90
Section modulus	Wz	[cm ³]	2.24	2.86
Radius of gyration	i _z	[cm]	1.59	1.72
Data to the torsion				
torsional moment of inertia	lt	[mm ⁴]	151.17	112.13
torsional section modulus	W _t	[mm ³]	75.59	75.76

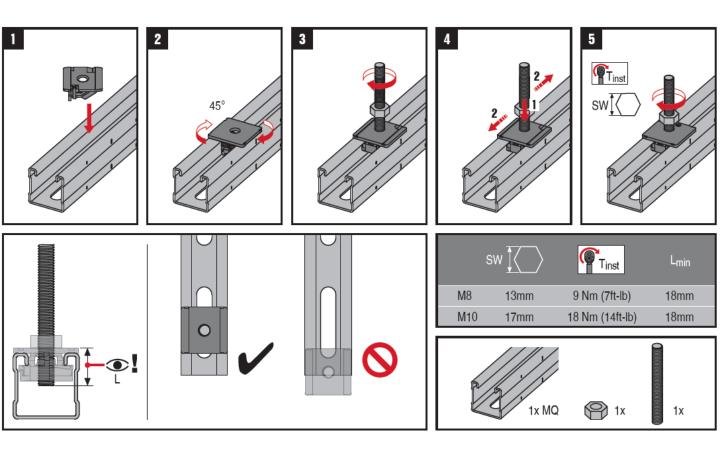
Designation	Item number
MQA-S M8	2141906
MQA-S M10	2141907

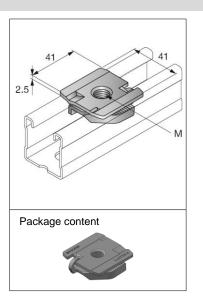
Corrosion protection:

Electro galvanized

Weight:

M 8 - 53g M10 - 53g


Submittal text:


Part, combining channel nut with metric internal thread M8 or M10 and channel plate. Installation by mounting to open side of channel and rotation to 45°. Fixation by screwing in threaded rod ant tightening a counter nut to pre-defined installation torque. Typically used for fixing pipe-rings and other threaded rod connections to installation channel. Can transfer tension, compression and shear loads.

Material properties:

material preperties				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 225 N	$f_{\rm u} = 360 - \frac{N}{2}$	E = 210000 <u>N</u>	$G = 80769 \frac{N}{1000}$
DIN EN 10025	$r_y = 233$ mm^2	$r_u = 300 - mm^2$	$L = 210000 \frac{1}{\text{mm}^2}$	$G = 80709 \frac{1}{mm^2}$

Instruction For Use:

Possible loading cases				
Standard				

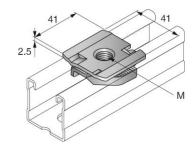
Design criteria used for loading capacity

Methodology:

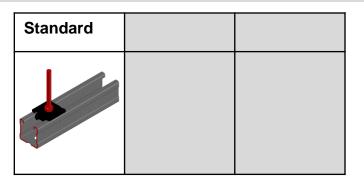
Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

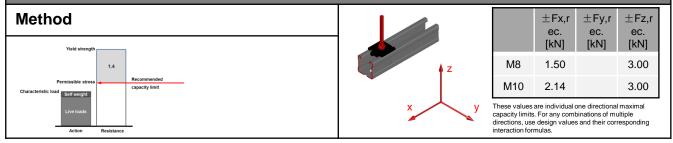

Software:

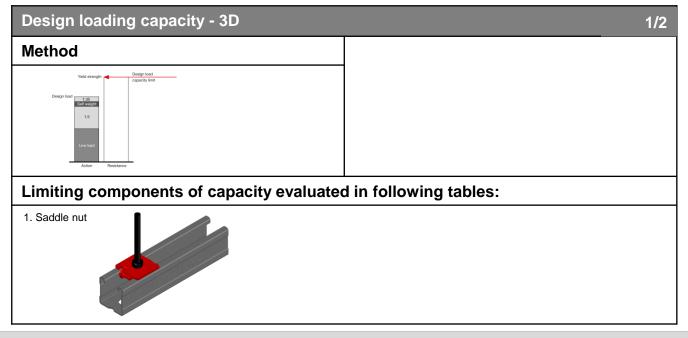
- Ansys 16.0
- Microsoft Excel


Environmental conditions:

- static loads
- no fatigue loads

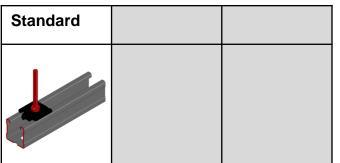
Simplified drawing:





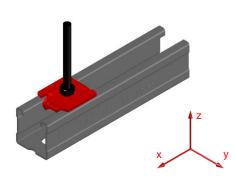
Loading case: Standar	rd	Combinations covered by loading case
BOM: For fixation on M8 threa 1x MQA-S M8 1x M8 nut 1x AM8x1000 t-rod For fixation on M10 thre 1x MQA-S M10 1x M10 nut 1x AM10x1000 t-rod	2141906 216465 339793 or various	Saddle nut installed in all sizes of MQ channel opened up or down

Recommended loading capacity - simplified for most common applications



Conditions of the loading capacity tables:

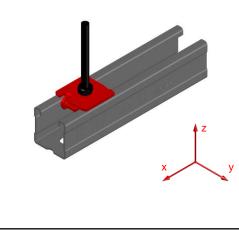
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. MQA-S-M8

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10			4.2	
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]

valid for edge distance ≥ 100mm

2. MQA-S-M10

3.00 3.00 4.2 +Mx,Rd -Mx,Rd +My,Rd -My,Rd +Mz,Rd -Mz,Rd [kNcm] [kNcm] [kNcm] [kNcm] kmz,Rd kmz,Rd kmz,Rd	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	3.00	3.00			4.2	
	, -	1 -			, -	7 -

valid for edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

Item number
2141908
2141909

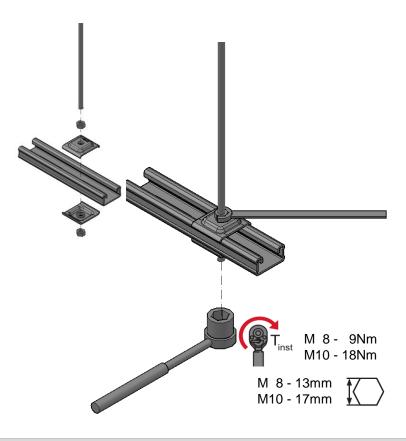
Corrosion protection:

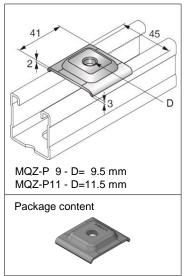
Electro galvanized

Weight:

MQZ-P9 - 35g MQZ-P11 - 35g

Submittal text:


Installation channel plate for fixation channels to threaded rods. Typically used in pairs to open side and back of channels in combination with counter nuts. Single piece usage for anchor fixation through the channel directly to base material. Geometry allows clamping of channel walls and high load transfer.


Material properties:

matorial proportioor				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 225 N	$f_{\rm u} = 360 - \frac{N}{2}$	$E = 210000 - \frac{N}{2}$	G = 80769 <u>N</u>
DIN EN 10025	$r_y = 235 \text{ mm}^2$	$r_u = 300 \frac{1}{\text{mm}^2}$	L = 210000 mm ²	$G = 80709 \frac{1}{mm^2}$

Instruction For Use:

Simplified, not attached to the packaging Loading case "Both sides,,

Possible loadi	ng cases	
Both sides		

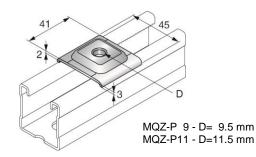
Design criteria used for loading capacity

Methodology:

Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

Possible loadi	ng cases	
Both sides		

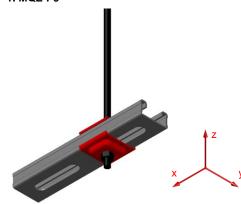
Loading case: Both sides		Combinations covered by loading case
BOM: For fixation on M8 threaded rod 2x MQZ-P9 bored plate 2x M8 nut 1x AM8x1000 t-rod For fixation on M10 threaded rod 2x MQZ-P11 bored plate 2x M10 nut 1x AM10x1000 t-rod	2141908 216465 339793 or various 2141909 216466 339795 or various	Channel washer installed on all sizes of MQ channel opened up or down

Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. Yield strength [kN] [kN] [kN] 1.4 3.57 Perm These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas. Action Resistance

Design loading capacity - 3D	1/2
Method	
Veld skreigh Design load Design load 1.5 Gef weight 1.5 Use load Resistance	
Limiting components of capacity evaluated	in following tables:
1. Bored plate	

Conditions of the loading capacity tables:

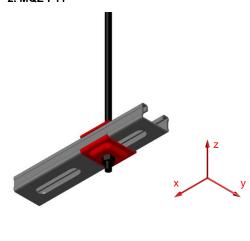
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Possible loadi	ng cases	
Both sides		

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. MQZ-P9

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
				5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]

for MQ-41-L and MQ-41 channel

2. MQZ-P11

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
				5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]

for MQ-41-L and MQ-41 channel

Installation Technical Manual - Technical Data - MQ system light & project

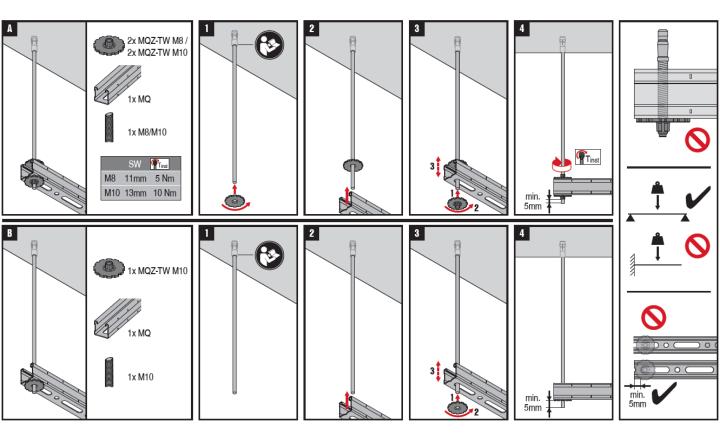
Designation	Item number
MQZ-TW-M8	2142030
MQZ-TW-M10	2142031

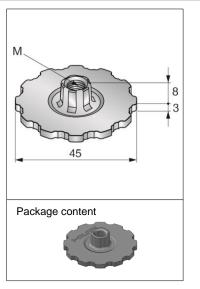
Corrosion protection:

Electro galvanized

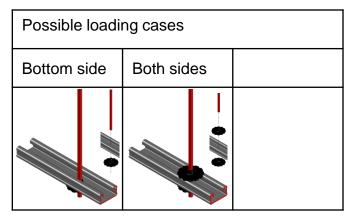
Weight:

MQZ-TW-M8 - 37g MQZ-TW-M10 - 37g


Submittal text:


Part, combining 45x3 mm washer and a metric nut M8 or M10 in one element. Typically used for fixation of channels to threaded rods. Can be used in pairs to open and back side of channel. Version M10 can be used as single piece to back of the channel with nut fitting to channel long holes and securing untightening.

Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 225 N	$f_{\rm u} = 360 - \frac{N}{2}$	$E = 210000 - \frac{N}{10000}$	$G = 80769 \frac{N}{N}$
DIN EN 10025	$r_y = 233$ mm^2	$r_u = 300 \frac{1}{\text{mm}^2}$	$L = 210000 \frac{1}{\text{mm}^2}$	$G = 80709 \frac{1}{mm^2}$

Instruction For Use:

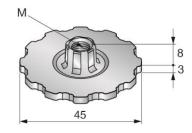
Design criteria used for loading capacity

Methodology:

Finite element analysis

Standards and codes:

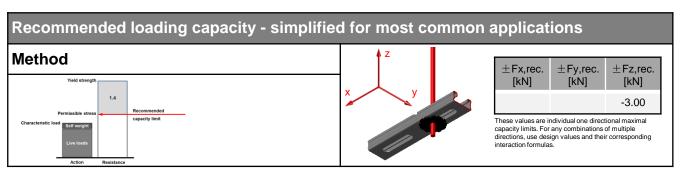
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

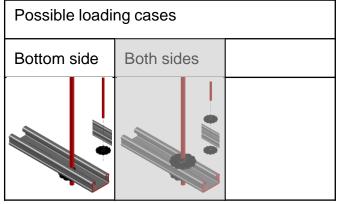
Environmental conditions:

- static loads
- no fatigue loads


Simplified drawing:

Possible loadi	Possible loading cases			
Bottom side	ttom side Both sides			

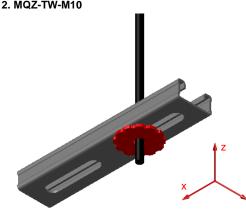
Loading case: Bottom side		Combinations covered by loading case		
BOM: hex-head of the TW locke	ed in the slot of the channel	Integrated hexagon head of the TW locked in the slot of the channel - nut used for securing either TW or		
For fixation on M10 threaded ro 1x MQZ-TW-M10 1x AM10x1000 t-rod M10 nut securing either TW or t	2142031 339795 or various	anchor		
1x M10 nut	216466			



Design loading capacity - 3D	1/2
Method	
Vest sharept Design had Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst Capacity inst	
Limiting components of capacity evaluated	in following tables:
1. Trapeze wheel	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures



Design loading capacity - 3D

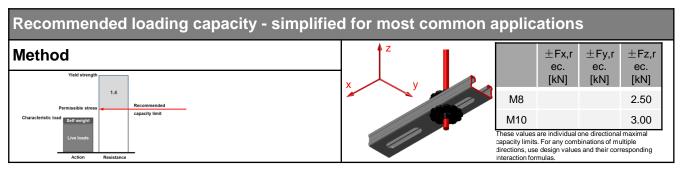
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
				0.0	4.20
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]

for MQ-41-L and MQ-41 channel

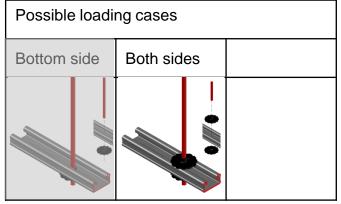
Condition:


hex-head of the TW locked in the slot of the channel - nut used for securing either TW or anchor and hex nut used for securing either the TW or anchor

Installation Technical Manual - Technical Data - MQ system light & project

Possible loading cases					
Bottom side Both sides					
			<i>₩</i> • <i>Ш</i> • − −		

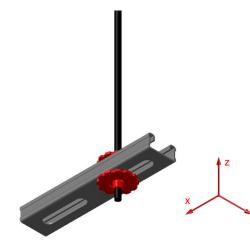
Loading case: Both sides		Combinations covered by loading case	
BOM: For fixation on M8 threaded rod 2x MQZ-TW-M8 trapeze wheel 1x AM8x1000 t-rod For fixation on M10 threaded rod 1x MQZ-TW-M10 1x AM10x1000 t-rod	2142030 339793 or various 2142031 339795 or various	Integrated hexagon head should be heading out of the channels - for all sizes of the MQ system channels. For both orientations of the channel - open down or open up	



Design loading capacity - 3D	1/2
Method	
Ved strength Design lead Copacity find Copacity find Life tool Life tool Copacity find	
Limiting components of capacity evaluated	in following tables:
1. Trapeze wheel	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$ C), no high (> +100 $^{\circ}\,$ C) temperatures



Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. MQZ-TW-M8

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
				3.5	3.5
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]

for MQ-41-L and MQ-41 channel

2. MQZ-TW-M10

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
				4.2	4.2
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]

for MQ-41-L and MQ-41 channel

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 20

Designation	Item number	
MQW-L-1/1	2142020	×
		Ø12.5 21

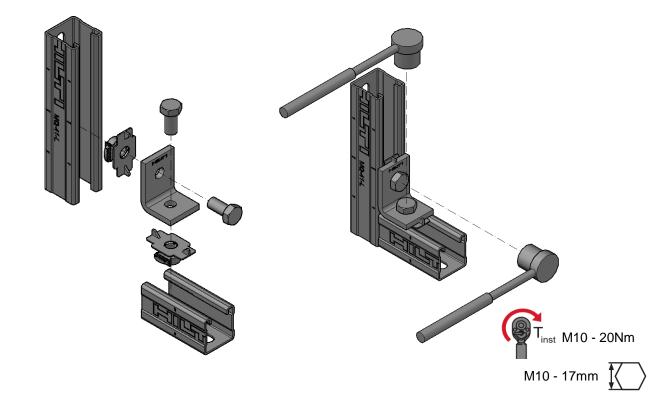
Corrosion protection:

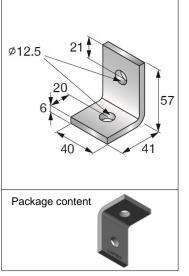
Electro galvanized

Weight:

159g

Submittal text:


Basic angle for connecting installation channels at 90°. Usage with MQM-M10 channel wing nuts and screws M10x20 – one at each side. Material thickness of 6mm and asymmetrical length of the sides. Can be used also for fixation of threaded rods and anchors M10 and M12.


Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$F_y = 235 \frac{N}{mm^2}$	$F_{u} = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
DD11 MOD - HN 555-1 2012.3				

Instruction For Use:

Simplified, not attached to the packaging

Possible loadi	ng cases	
Standard		

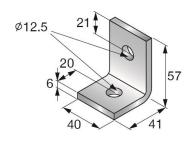
Design criteria used for loading capacity

Methodology:

Analytic calculation Hardware tests

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General	
		rules-Supplementary rules for cold-formed members and	
		sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	RAL-GZ 655	Pipe Support	04.2008


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

Possible loading cases		
Standard		

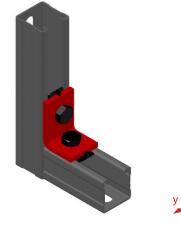
Loading case: Standard		Combinations covered by loading case
BOM: 1x MQW-L-1/1 2x MQM-M10 wing nut 2x M10x20 hexagon head screw	2142020 369626 216453	Angle perpendicularly connecting two open sections of channels

Recommended loading capacity - simplified for most common applications					
Method	z z	±Fx,rec.	±Fy,rec.	±Fz,rec.	
Yield strength		[kN]	[kN]	[kN]	
Permissible stress Recommended	× ×	1.27	0.00	2.50	
Characteristic load Sett weight Live loads Action Resistance		These values are i capacity limits. For directions, use des interaction formula	sign values and thei	of multiple	

Design loading capacity - 3D	1/2
Method	
Veld strength English fold English Sold Self Kengel 1.5 Uve head Low head	
Limiting components of capacity evaluated	in following tables:
1. Steel connector	2. Wing nut

Conditions of the loading capacity tables:

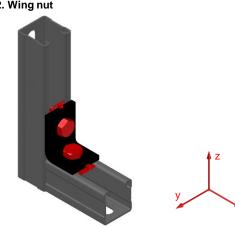
- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures Г


Possible loadi	Possible loading cases		
Standard			

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.15	5.84	0.00	0.00	4.85	4.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
0.00	0.00	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

2. Wing nut

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.55	4.88	0.00	0.00	7.00	7.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
0.00	0.00	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le$$

1

Installation Technical Manual - Technical Data - MQ system light & project

Designation	Item number	
MQW-L-2/1	2142021	19
-		

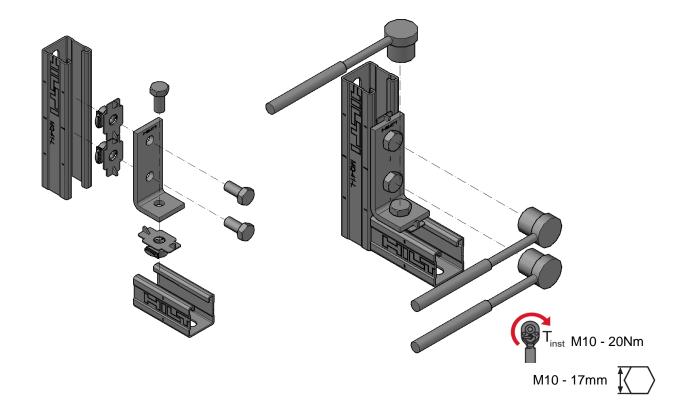
Corrosion protection:

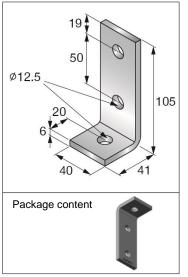
Electro galvanized

Weight:

241g

Submittal text:


Basic angle for connecting installation channels at 90°. Usage with MQM-M10 channel wing nuts and screws M10x20 – two on the long side and one on the short side. Material thickness of 6mm. Can be used also for fixation of threaded rods and anchors M10 and M12.


Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 225 N	$f_{\rm u} = 360 - \frac{N}{100}$	F = 210000 <u>N</u>	C - 80760 N
DIN EN 10025	$r_y = 235 \frac{1}{\text{mm}^2}$	$r_u = 300$ mm ²	$L = 210000 \frac{1}{mm^2}$	$G = 80709 \frac{1}{mm^2}$

Instruction For Use:

Simplified, not attached to the packaging

Possible loading cases		
Standard		

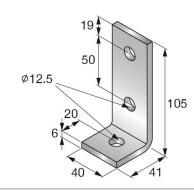
Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Hardware tests

Standards and codes:

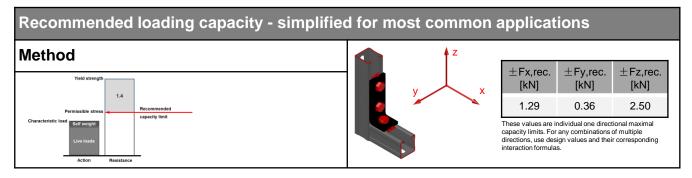
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General	
		rules-Supplementary rules for cold-formed members and	
		sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	RAL-GZ 655	Pipe Support	04.2008


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads


Simplified drawing:

Possible loading cases		
Standard		

Loading case: Standard		Combinations covered by loading case	
BOM: 1x MQW-L-2/1 3x MQM-M10 wing nut 3x M10x20 hexagon head screw	2142021 369626 216453	Angle perpendicularly connecting two open sections of channels	

Design loading capacity - 3D	1/2
Method	
Veld skrungth Capacity limit Design load 1.5 Live load Action Resistance	
Limiting components of capacity evaluated	in following tables:
1. Steel connector	2. Wing nut

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures

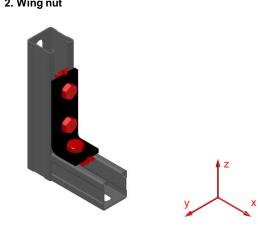
Possible loading cases			
Standard			

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.75	5.84	1.55	1.55	4.85	4.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
5.84	5.84	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

2. Wing nut

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
3.60	4.88	0.75	0.75	12.60	7.00
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
6.25	6.25	0.00	0.00	0.00	0.00

Interaction:

Tension and shear parallel to channel

$$\frac{F_{x.Ed}}{F_{x.Ed}} + \frac{F_{z.Ed}}{F_{x.Ed}} \le 1$$

F_{x.Rd} + F_{z.Rd} Shear transverse to channel

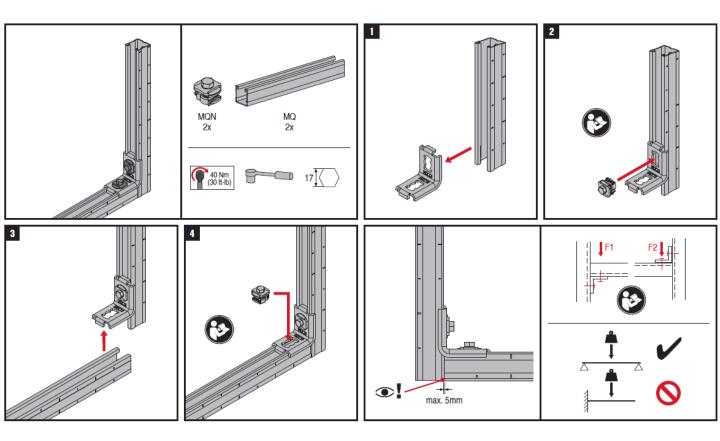
<u>y.Ea</u> + ^{//}x.Ea ≤ 1 F_{y.Rd} ⁺ M_{x.Rd}

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 28

Package content

MQW-H2 Angle


Designation MQW-H2	Item number 2141929	75
Corrosion protection: Electro galvanized		4
Weight: 211g		8

Submittal text:

Angle for connecting two channels at 90° in combination with two channel connectors MQN. Angle geometry and integrated bends allows high stiffness and direct load transfer to the installation channel.

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S275JR - DIN EN 10025-2	$F_{y} = 275 \frac{N}{mm^2}$	$F_{u} = 430 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 29

MQW-H2 Angle

Possible loading cases		
Standard		

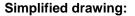
Design criteria used for loading capacity

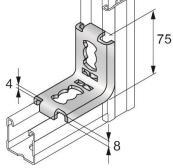
Methodology:

- Finite element analysis
- · Hardware tests

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:


- Ansys 16.0
- Microsoft Excel

Environmental conditions:

static loads

• no fatigue loads

MQW-H2 Angle

Possible loading cases		
Standard		

Loading case: Standard		Combinations covered by loading case
BOM: 1x MQW-H2 2x MQN push button	2141929 369623	Angle perpendicularly connecting two open sections of channels

Recommended loading capacity - simplified for most common applications					
Method	y x	capacity limits. For	±Fy,rec. [kN] 1.86 ndividual one direct any combinations. ign values and thei s.	of multiple	

Design loading capacity - 3D			1/2	
Method				
Limiting components of capa	acity avaluated	in following ta	bles	
1. Steel connector	2. MQN on horizontal channel (MQ-41-L)		3. MQN on vertical channel (MQ-41-L)	

MQW-H2 Angle

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$ C), no high (> +100 $^{\circ}\,$ C) temperatures

Possible loadi	ng cases	
Standard		

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	5.48	8.40	2.60	2.60	8.40	5.48
× z	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
y x	11.20	11.20	0.00	0.00	0.00	0.00
	$\frac{\text{Interaction:}}{\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.}}{F_{y.}}}$	$\frac{\text{Ed}}{\text{Rd}} + \frac{\text{F}_{z.\text{Ed}}}{\text{F}_{z.\text{Rd}}}$	$+ \frac{M_{x.Ed}}{M_{x.Rd}} +$	$\frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$	$\frac{M_{z.Ed}}{M_{z.Rd}} \le 1$	
2. MQN on horizontal channel (MQ-41-L)	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
↓ Z	6.72	6.72	Not decisive	Not decisive	Not decisive	3.50
	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
	Not decisive	Not decisive	Not decisive	Not decisive	Not decisive	Not decisive
	Interaction: Interaction i	s not neces	sary			
3. MQN on vertical channel (MQ-41-L)	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
♦ Z	3.50	Not decisive	Not decisive	Not decisive	6.72	6.72
	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
	Not decisive	Not decisive	Not decisive	Not decisive	Not decisive	Not decisive
	Interaction: Interaction i	s not neces	sary			
	Installation T			T I ¹ I		a 1

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 32

Designation	Item number	
MQW-L-6/2	2141928	

Corrosion protection:

Electro galvanized

Weight:

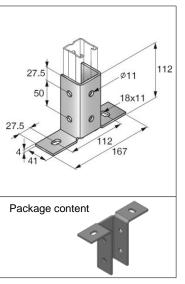
555g

Submittal text:

Base connector for installation channels at 90°. Usage with two MQM-M10 channel wing nuts and screws M10x20. Fixation holes at the three sides of the connector allowing rotation of channel open side - when used with 41x41 or 41x21D channels. Two anchor holes with dimensions 18x11mm.

Material properties:

material preperties				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	$f_{v} = 235 \frac{N}{2}$	$f_{\rm H} = 360 - \frac{N}{2}$	E = 210000 <u>N</u>	G = 80769 <u>N</u>
DIN EN 10025	$r_y = 235 \frac{1}{\text{mm}^2}$	$r_u = 300 \frac{1}{\text{mm}^2}$	$L = 210000 \frac{1}{\text{mm}^2}$	$G = 80709 \frac{1}{mm^2}$


Instruction For Use:

Simplified, not attached to the packaging

Loading case ,,Centric,,

Loading case "Eccentric,,

Possible loading cases		
Centric	Eccentric	

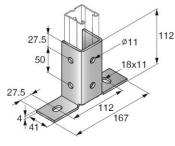
Design criteria used for loading capacity

Methodology:

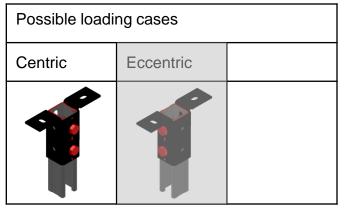
- Analytic calculation
- · Hardware tests

• Standards and codes:

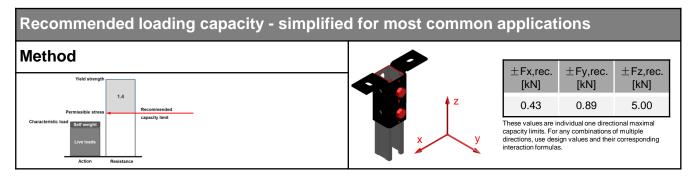
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Mathcad 15.0
- Microsoft Excel


Environmental conditions:

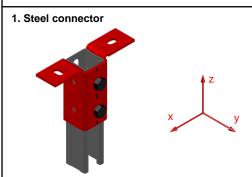
- static loads
- no fatigue loads


Simplified drawing:

Loading case: Centric		Combinations covered by loading case
BOM: 1x MQW-L-6/2 2x MQM-M10 wing nut 2x M10x20 hexagon head screw	2141928 369626 216453	Rail support connecting perpendicularly channel to base material

Design loading capacity - 3D	1/2
Method	
Veld storugh Capacity linit Design load Line tool Action Residence	
Limiting components of capacity evaluated	in following tables:
1. Steel connector	2. Wing nuts

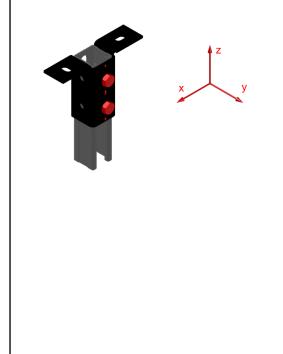
Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$ C), no high (> +100 $^{\circ}\,$ C) temperatures

Possible loading cases		
Centric	Eccentric	

Design loading capacity - 3D

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

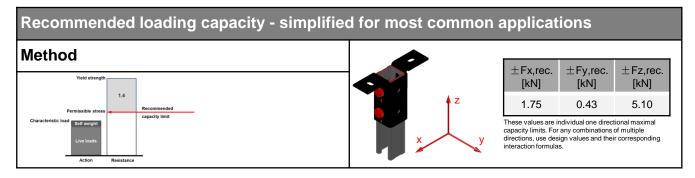
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
4.09	4.09	1.25	1.25	12.99	7.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
5.13	5.13	8.47	8.47	3.34	3.34

 $\frac{\mathsf{F}_{x.\mathsf{Ed}}}{\mathsf{F}_{x.\mathsf{Rd}}} + \frac{\mathsf{F}_{y.\mathsf{Ed}}}{\mathsf{F}_{y.\mathsf{Rd}}} + \frac{\mathsf{F}_{z.\mathsf{Ed}}}{\mathsf{F}_{z.\mathsf{Rd}}} + \frac{\mathsf{M}_{x.\mathsf{Ed}}}{\mathsf{M}_{x.\mathsf{Rd}}} + \frac{\mathsf{M}_{y.\mathsf{Ed}}}{\mathsf{M}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{z.\mathsf{Ed}}}{\mathsf{M}_{z.\mathsf{Rd}}} \leq 1$

2. Wing	nuts
---------	------

In MQ-41 -2mm thick channel profile							
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
	0.88	0.88	4.91	5.91	12.60	12.60	
	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
	35.00	35.00	9.38	9.38	22.40	22.40	
Interaction: Shear transverse to channel: Shear parallel to channel: Pull-out;							
	$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$	≤ 1	$\frac{\textbf{F}_{\textbf{z},\textbf{Ed}}}{\textbf{F}_{\textbf{z},\textbf{Rd}}} \leq 1 \qquad \qquad \frac{\textbf{F}_{\textbf{y},\textbf{Ed}}}{\textbf{F}_{\textbf{y},\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{x},\textbf{Ed}}}{\textbf{M}_{\textbf{x},\textbf{Rd}}}$			$\frac{M_{\textbf{Z}.\textbf{Ed}}}{M_{\textbf{Z}.\textbf{Rd}}} \leq 1$	
In MQ-41 - 1.5mm thick channel profile							
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
	0.60	0.60	2.45	2.95	11.86	11.86	
	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
	17.50	17.50	6.38	6.38	11.20	11.20	
	Interaction: Shear transverse to channel: Shear parallel to channel: Pull-out:						
-	$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$	≤ 1	$\frac{\textbf{F}_{\textbf{Z}}\textbf{E}\textbf{d}}{\textbf{F}_{\textbf{Z}}\textbf{R}\textbf{d}} \leq 1$		$\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$		

Installation Technical Manual - Technical Data - MQ system light & project


Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 36

MQW-L-6/2 Rail support

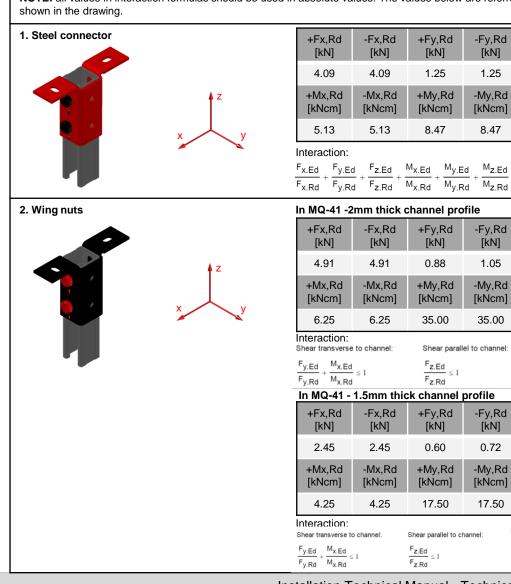
Possible loading cases		
Centric	Eccentric	

Loading case: Eccentric		Combinations covered by loading case
BOM: 1x MQW-L-6/2 2x MQM-M10 wing nut 2x M10x20 hexagon head screw	2141928 369626 216453	Rail support connecting perpendicularly channel to base material

Design loading capacity - 3D	1/2
Method	
Veld storugh Capacity limit Design load Design load 1.5 Live load Action Resistance	
Limiting components of capacity evaluated	in following tables:
1. Steel connector	2. Wing nuts

MQW-L-6/2 Rail support

Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures

Possible loading cases		
Centric	Eccentric	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
4.09	4.09	1.25	1.25	9.43	7.14
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
5.13	5.13	8.47	8.47	3.34	3.34
nteraction: F _{x.Ed} F _{y.Ed} F _{z.Ed} M _{x.Ed} M _{y.Ed} M _{z.Ed}					

XIII YIII	a 2.11a	XING 9.15	2.10			
n MQ-41 -2mm thick channel profile						
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
4.91	4.91	0.88	1.05	12.60	12.60	
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
6.25	6.25	35.00	35.00	22.40	22.40	
$ \begin{array}{lll} \mbox{nteraction:} & \mbox{Full-out.} \\ \mbox{Shear transverse to channel:} & \mbox{Shear parallel to channel:} & \mbox{Full-out.} \\ \hline F_{y,Ed} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1 & \mbox{Figure 2} & Fi$						
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
2.45	2.45	0.60	0.72	11.86	11.86	
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
4.25	4.25	17.50	17.50	11.20	11.20	
Full Pull-out: Shear transverse to channel: Shear parallel to channel: Pull-out: $F_{y,Ed}$ $\frac{M_{x,Ed}}{M_{x,Rd}} \le 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \le 1$ $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$						

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 38

2/2

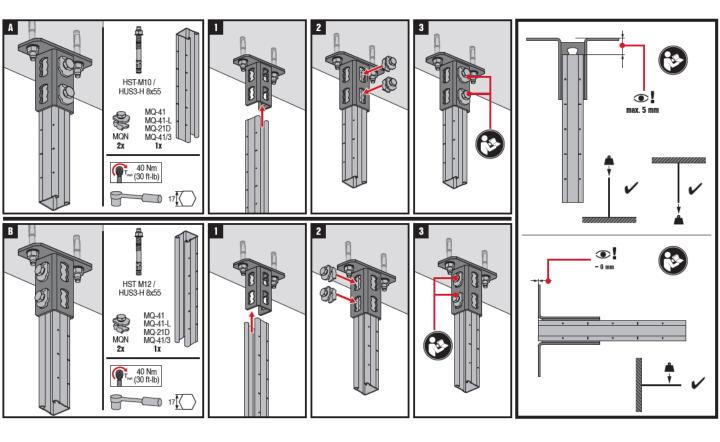
Designation	Item number
MQP-41	2141927
	2141321

Corrosion protection:

Electro galvanized

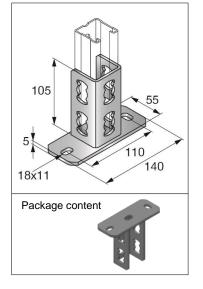
Weight:

587g


Submittal text:

Base connector for installation channels at 90°. Welded base plate gives stiffness and bending load capacity. Usage with two MQN channel connectors. Fixation holes at the three sides of the connector allowing rotation of channel open side - when used with 41x41 or 41x21D channels. Two anchor holes with dimensions 18x11mm.

Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 225 N	$f_{\rm u} = 360 - \frac{N}{100}$	F = 210000 <u>N</u>	$G = 80769 \frac{N}{N}$
DIN EN 10025	$m_y = 235 \frac{1}{mm^2}$	$n_u = 300 - \frac{1}{mm^2}$	$L = 210000$ mm^2	$G = 80709 \frac{1}{mm^2}$

Instruction For Use:

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 39

Possible loading cases		
Centric	Eccentric	

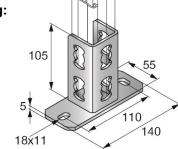
Design criteria used for loading capacity

Methodology:

· Finite element analysis

•	Standards	and	codes:
---	-----------	-----	--------

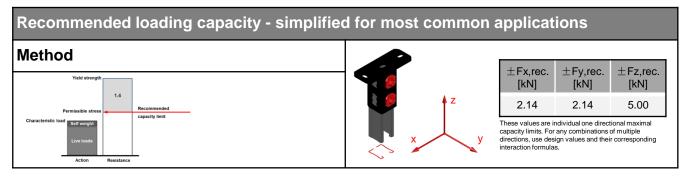
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

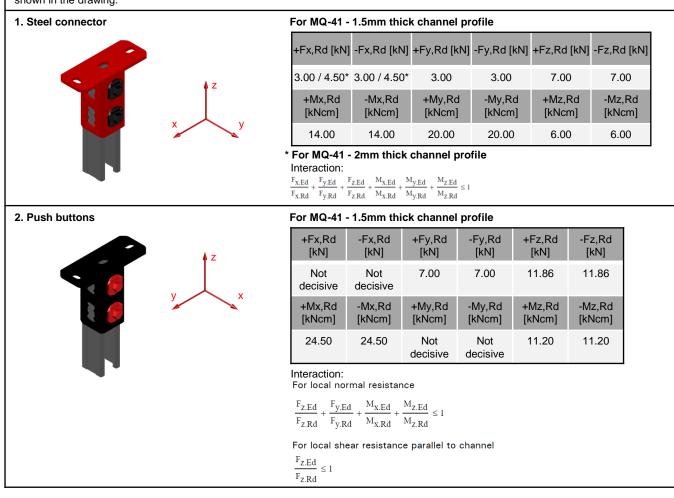

Simplified drawing:

Possible loading cases		
Centric	Eccentric	

Loading case: Centric		Combinations covered by loading case
BOM: 1x MQP-41 2x MQN push button	2141927 369623	Rail support connecting perpendicularly channel to base material

Design loading capacity - 3D	1			1/3
Method				
Limiting components of capa	acity evaluated	in following ta	ıbles:	
1. Steel connector	2. Push buttons		3. Welds	

Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Possible loading cases				
Centric	Eccentric			

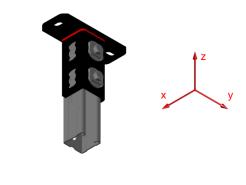
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Installation Technical Manual - Technical Data - MQ system light & project

2/3



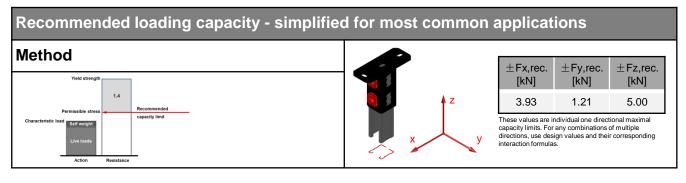
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
10.12	10.12	5.14	5.14	13.00	13.00	
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
28.45	28.45	38.00	38.00	8.89	8.89	
Interaction:						
$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$						


Installation Technical Manual - Technical Data - MQ system light & project

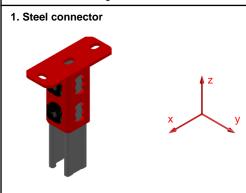
3/2

Possible loading cases				
Centric	Eccentric			

Loading case: Eccentric		Combinations covered by loading case
BOM: 1x MQP-41 2x MQN push button	2141927 369623	Rail support connecting perpendicularly channel to base material

Design loading capacity - 3D)		1,	/3
Method				
Limiting components of capa	acitv evaluated	in following ta	bles:	
1. Steel connector	2. Push button		3. Welds	

Conditions of the loading capacity tables:

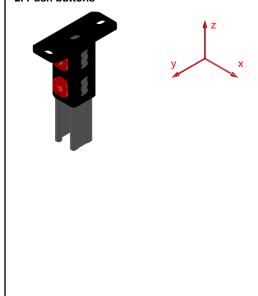

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures

Possible loading cases				
Centric	Eccentric			

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



For MQ-41 - 1.5mm thick channel profile						
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
5.50	5.50	1.70	1.70	7.00	7.00	
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
9.00	9.00	35.00	35.00	6.00	6.00	

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$

2. Push buttons

For MQ-41 - 1.5mm thick channel profile

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
7.00	7.00	1.70	1.70	11.86	11.86
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
5.95	5.95	35.52	35.52	11.20	11.20

Interaction:

For local normal resistance

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

For local shear resistance parallel to channel

 $\frac{F_{z.Ed}}{1} \leq 1$

F_{z.Rd}

For local shear resistance perpendicular to channel

$$\frac{F_{y.Ed}}{F_{y.Ed}} + \frac{M_{x.Ed}}{M_{y.Ed}}$$

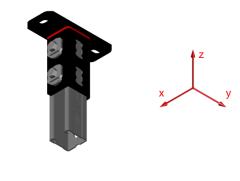
 $\frac{1}{F_{y.Rd}} + \frac{\Lambda.Ed}{M_{x.Rd}} \le 1$

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 45

2/3

3/2


MQW-41 Rail support

Design loading capacity - 3D

Summary of design loads*

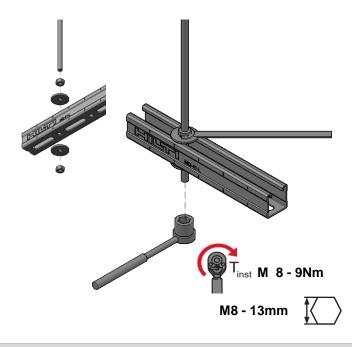
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Welds

	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
	12.92	12.92	5.03	5.03	16.60	16.60	
	+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
	14.23	14.23	38.00	38.00	8.89	8.89	
Interaction:							
	$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$						

MQ System Light & Project

M8 Threaded rod channel through bolt


Designation		Item number	
M8 Threaded ro	od channel through bolt		L
	AM8x1000 4.8 threaded rod	339793	
	AM8x2000 4.8 threaded rod	339794	N.
	AM8x3000 4.8 threaded rod	216415	
	A 8,4/40 washer	282856	M = 8 mm
	M8 nut	216465	DI = 8,4 mm DA = 40 mm
Corrosion prot	ection:		H = 7 mm
Threaded rod	galvanized 5µm		W = 13 mm
Washer	galvanized 5µm		
Nut	galvanized 5µm		Package content
Weight:			
Threaded rod	- as per used length		Individual items
Washer	- 27g		
Nut	- 5g		

Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Threaded rod				
Steel grade 4.8 DIN 976-1	$F_{y} = 320 \frac{N}{mm^{2}}$	$F_{\rm u} = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Washer				
Steel S235JR/DD11MOD				
DIN EN 10025-2 2005.4/HN 547 2004.10	$F_{v} = 235 \frac{N}{mm^{2}}$	$F_{u} = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Nut	, mm	nin	mm	ntm
Steel grade 8	$F_{y} = 640 \frac{N}{mm^2}$	$F_{u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
	$y = 040 mm^2$	$m_{\rm u} = 000 mm^2$	$E = 210000 mm^2$	$C = 00100 mm^2$

Instruction For Use:

Simplified, not attached to the packaging Loading case "Both sides,,

M8 Threaded rod channel through bolt

Possible loading cases		
Both sides		

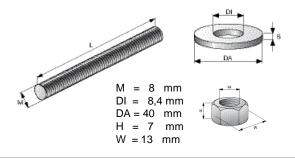
Design criteria used for loading capacity

Methodology:

· Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 48

M8 Threaded rod channel through bolt

Possible loadi	ng cases	
Both sides		

Loading case: Both sides	Combinations covered by loading case
BOM: 2x A 8,4/40 washer 282856 2x M8 nut 216465 1x AM8x1000 4.8 threaded rod 339793	Threaded rod connection through bolting the channel - opened up or down secured by two large washers and nuts from both sides of the channel

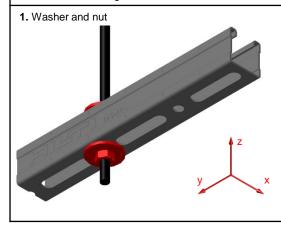
Recommended loading capacity - simplified for most common applications				
Method	±Fx,rec. ±Fy,rec. ±Fz,rec. [kN] [kN] 2.50			
Permissible stress Recommended Characteristic load Action Resistance Resistance	These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.			

Design loading capacity - 3D	1/2
Method	
Design load Expanding load Design load Expanding load 1.5 Expanding load Live load Penalarce	
Limiting components of capacity evaluated	in following tables:
1. Washer and nut	

2/2

M8 Threaded rod channel through bolt

Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

Possible loading cases		
Both sides		

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
				3.50	3.50
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]

Condition: valid for channel edge distance ≥ 100mm

MQ System Light & Project

M10 Threaded rod channel through bolt

Designation		Item number	
M10 Threaded	rod channel through bolt		L
	AM10x1000 4.8 threaded rod	339795	
	AM10x2000 4.8 threaded rod	339796	
	AM10x3000 4.8 threaded rod	216418	
	A 10,5/40 washer	282857	M = 10 mm
	M10 nut	216466	DI = 10,5 mm
Corrosion prot	ection:		H = 8 mm
Threaded rod	galvanized 5µm		W = 17 mm
Washer	galvanized 5µm		
Nut	galvanized 5µm		Package content
Weight:	0		
Threaded rod	- as per used length		Individual items
Washer	- 27g		
Nut	- 10g		
	-		

Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Threaded rod				
Steel grade 4.8 DIN 976-1	$F_y = 320 \frac{N}{mm^2}$	$F_{\rm u} = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Washer				
Steel S235JR/DD11MOD				
DIN EN 10025-2 2005.4/HN 547 2004.10	$F_{v} = 235 \frac{N}{mm^{2}}$	$F_{u} = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Nut	, mm	nin	тт	mm
Steel grade 8	$F_{y} = 640 \frac{N}{mm^2}$	$F_{u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
	y 2.12 mm ²	u mm²	$=$ mm^2	mm ²

Instruction For Use:

Simplified, not attached to the packaging Loading case "Both sides,,

M10 Threaded rod channel through bolt

Possible loading cases		
Both sides		

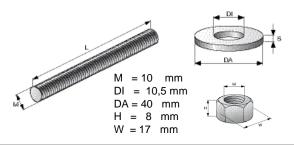
Design criteria used for loading capacity

Methodology:

· Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 52

M10 Threaded rod channel through bolt

Possible loading cases		
Both sides		

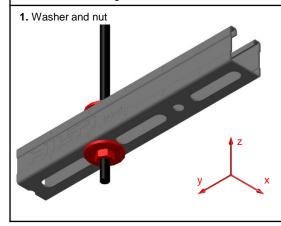
Loading case: Both sides		Combinations covered by loading case
2x M10 nut 21	2857 6466 9795	Threaded rod connection through bolting the channel - opened up or down secured by two large washers and nuts from both sides of the channel

Recommended loading capacity - simplified for most common applications					
Method	±Fx,rec. ±Fy,rec. ±Fz,rec. [kN] [kN] [kN]				
Characteristic load Self weight Live loads Action Resistance	y y x x x x x x x x x x x x x				

Design loading capacity - 3D	1/2
Method	
Design load Expanding load Design load Expanding load 1.5 Expanding load Live load Penalarce	
Limiting components of capacity evaluated	in following tables:
1. Washer and nut	

M10 Threaded rod channel through bolt

Conditions of the loading capacity tables:


- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

Possible loading cases		
Both sides		

Design loading capacity - 3D

Summary of design loads*

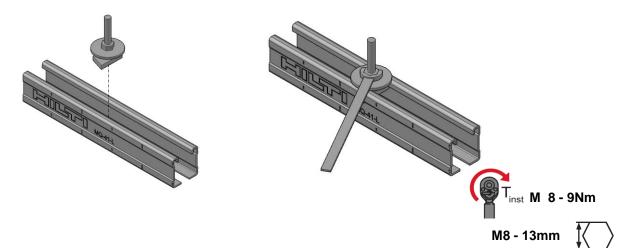
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
				4.20	4.20
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

2/2


Designation		Item number	
HHK 41 M8X40		312361	
HHK 41 M8X50		312362	
HHK 41 M8X60		312363	840
HHK 41 M8X80		312365	
HHK 41 M8X10	n	312367	D I I I I I I I I I I I I I I I I I I I
HHK 41 M8X10	-	312368	73 9 5 3
	-		Q 8 5
HHK 41 M8X15	J	312369	
Corrosion prote Threaded rod Washer	ection: galvanized 5µm galvanized 5µm		M = 8 mm L = see designation HHK 41 M8xL
Nut	galvanized 5µm		Package content
Weight:	garranizoa opini		
HHK 41 M8X40	- 73g		
HHK 41 M8X50	- 78g		
HHK 41 M8X60	- 82g		
HHK 41 M8X80	- 88g		
	009		

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Threaded rod				
Steel grade 4.8 DIN 976-1	$F_y = 320 \frac{N}{mm^2}$	$F_{u} = 400 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Washer				
Steel S235JR/DD11MOD				
DIN EN 10025-2 2005.4/HN 547 2004.10	$F_y = 235 \frac{N}{mm^2}$	$F_{u} = 360 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Nut	· min	nin	mm	nini
Steel grade 8	$F_{y} = 640 \frac{N}{mm^2}$	$F_{u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

HHK 41 M8X100 - 94g HHK 41 M8X120 -100g HHK 41 M8X150 - 110g

Simplified, not attached to the packaging

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 55

Possible loading cases		
Standard		

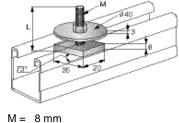
Design criteria used for loading capacity

Methodology:

· Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

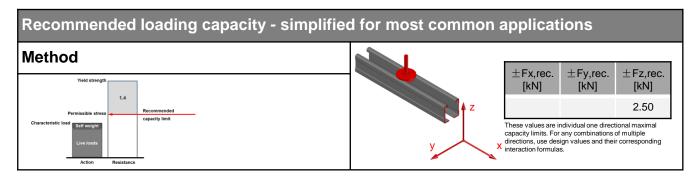

Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:



L = see designation HHK 41 M8xL

Possible loading cases			
Standard			

Loading case: Standard		Combinations covered by loading case
BOM: 1x HHK HHK 41 M8X40 HHK 41 M8X50 HHK 41 M8X60 HHK 41 M8X80 HHK 41 M8X100 HHK 41 M8X120 HHK 41 M8X150	312361 312362 312363 312365 312365 312367 312368	Threaded bolt connection into a channel using simple channel nut, large washer and nut

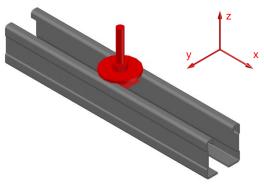
Design loading capacity - 3D	1/2
Method	
Ved storyth Design load Capacity linit Capacity linit Capacity linit Capacity linit Capacity linit	
Limiting components of capacity evaluated	in following tables:
1. T-bolt	

2/2

M8 T-bolt in the channel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures


Possible loading cases		
Standard		

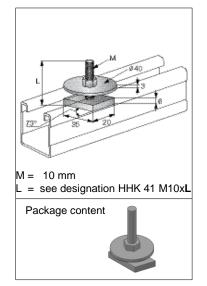
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

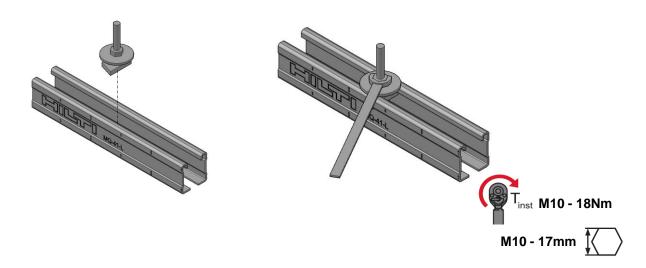
1. Washer and nut

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
				3.50	3.50
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]


Condition: valid for channel edge distance ≥ 100mm

Designation	Item number
HHK 41 M10X40	312371
HHK 41 M10X60	312373
HHK 41 M10X80	312374
HHK 41 M10X100	312375
HHK 41 M10X150	312377

Corrosion protection:


Threaded rod	galvanized 5µm
Washer	galvanized 5µm
Nut	galvanized 5µm
Weight:	
HHK 41 M10X40	- 77g
HHK 41 M10X60	- 92g
HHK 41 M10X80	- 105 g
HHK 41 M10X10	0 - 116g
HHK 41 M10X15	0 - 141g

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Threaded rod				
Steel grade 4.8 DIN 976-1	$F_y = 320 \frac{N}{mm^2}$	$F_{\rm u} = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Washer	·		nene	mm
Steel S235JR/DD11MOD				
DIN EN 10025-2 2005.4/HN 547 2004.10	$F_v = 235 \frac{N}{mm^2}$	$F_{u} = 360 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Nut	, mm	mm	mm	mm
Steel grade 8	$F_{y} = 640 \frac{N}{mm^2}$	$F_{u} = 800 \; \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

Simplified, not attached to the packaging

Possible loading cases		
Standard		

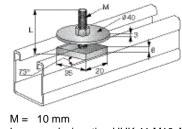
Design criteria used for loading capacity

Methodology:

· Finite element analysis

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

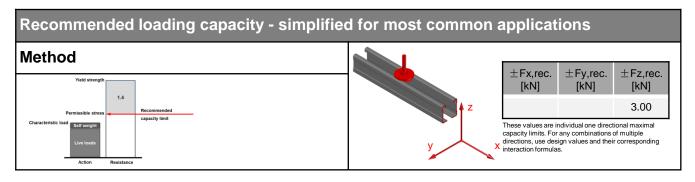

Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:



L = see designation HHK 41 M10xL

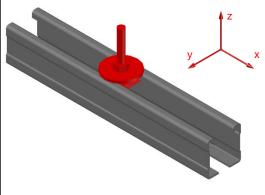
Possible loading cases			
Standard			

Loading case: Standard		Combinations covered by loading case
BOM: 1x HHK HHK 41 M10X40 HHK 41 M10X60 HHK 41 M10X80 HHK 41 M10X100 HHK 41 M10X150	312371 312373 312374 312375 312377	Threaded bolt connection into a channel using simple channel nut, large washer and nut

Design loading capacity - 3D	1/2
Method	
Veld strongth Design load Capacity limit Capacity limit Limit Rod Limit Rod Action Presidence	
Limiting components of capacity evaluated	in following tables:
1. T-bolt	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures


Possible loadi	ng cases	
Standard		

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Washer and nut

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
				4.20	4.20
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

2/2

NOK 21/200 21/102/	Designation	Item number
WQR-L-21/200 2141924	MQK-L-21/200	2141924
MQK-L-21/300 2141925	MQK-L-21/300	2141925
MQK-L-21/450 2141926	MQK-L-21/450	2141926

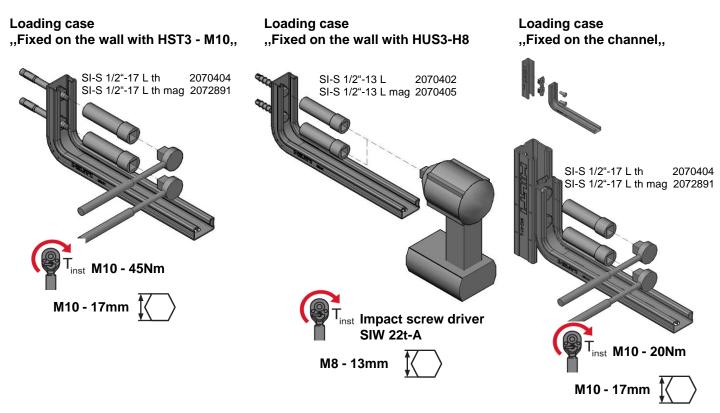
Corrosion protection:

Sendzimir galvanized

Weight:

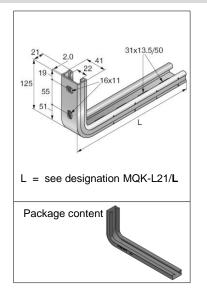
MQK-L-21/200 - 437g MQK-L-21/300 - 581g MQK-L-21/450 - 797g

Submittal text:


L-shape bent installation bracket with channel section 41x21x2mm. Two anchor holes 16x11mm on the short side and elongated holes with step 50mm on the long side. Direct fixation with anchors to base material or to other channels with two MQM-M10 wing nuts and M10x20 screws. Usage with open side up or down.

Material properties:

material properties	·•			
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f = 235 N	$f_{\rm u} = 360 - \frac{N}{2}$	$E = 210000 - \frac{N}{10000}$	G = 80769 <u>N</u>
DIN EN 10025	$m_y = 200$ mm ²	$n_u = 300$ mm ²	E = 210000 mm ²	mm^2


Instruction For Use:

Simplified, not attached to the packaging

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 63

Possible loading	g cases		
Bracket only	Fixed to the wall with HST3 - M10	Fixed to the wall with HUS3 - H8	Fixed on channel

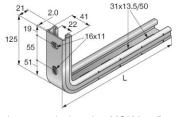
Design criteria used for loading capacity

Methodology:

- Analytic calculation
- · Hardware tests

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

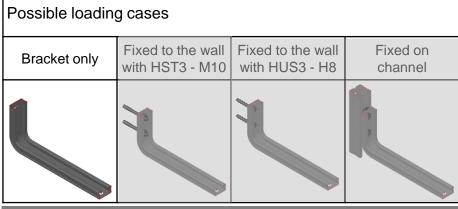
- static loads
- no fatigue loads

Simplified drawing:

L = see designation MQK-L21/L

Possible loading	g cases	
Bracket only	Fixed to the wall with HST3 - M10	Fixed on channel
	Jan and Jan	

Loading case: Bracket only	Combinations covered by loading case
BOM: 1x MQK-L-21 MQK-L-21/200 2141924 MQK-L-21/300 2141925 MQK-L-21/450 2141926	Bracket ready to use


Recommended loading capacity - simplified for most common applications		
Method	x 🔨 x	\pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN]
Characteristic load Set weight Live loads Action Resistance	Z	1.19 3.11 7.56 ±My,rec. [kNm] 8.93 5.93 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D	1/2
Method	
Ved strongth Capacity limit Design load	
Limiting components of capacity evaluated	in following tables:
1. Steel part of the bracket	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

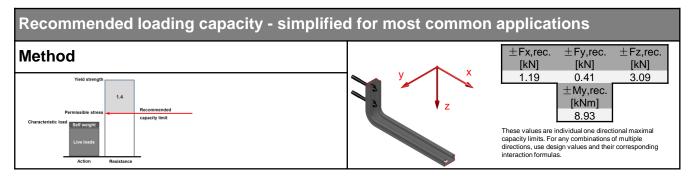
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket

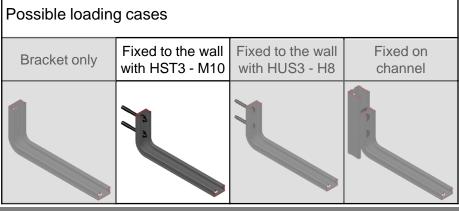
1	y x z
	v


		i y,i ca [ia t]		-Fz,Rd [kN]
1.66 2.41	4.35	4.35	10.58	10.58
+Mx,Rd -Mx,Rd [kNcm] [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
1.04 1.04	12.50	12.50	1.04	1.04

$$\frac{F_{x.Ed}}{F_{x.Ed}} + \frac{F_{y.Ed}}{F_{y.Ed}} + \frac{F_{z.Ed}}{F_{z.Ed}} + \frac{M_{x.Ed}}{M_{x.Ed}} + \frac{M_{y.Ed}}{M_{y.Ed}} + \frac{M_{z.Ed}}{M_{z.Ed}} \le 1$$

Possible loadin	g cases		
Bracket only	Fixed to the wall with HST3 - M10	Fixed to the wall with HUS3 - H8	Fixed on channel

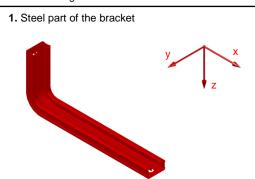
Loading case: Fixed to the wall with HST3 - M10	Combinations covered by loading case
BOM: 1x MQK-L-21 MQK-L-21/200 2141924 MQK-L-21/300 2141925 MQK-L-21/450 2141926 2x HST3 M10x90 30/10 stud anchor 2105712 2x MQZ-E21 plastic end cap 370598	Bracket fixed to concrete (B20/25) wall with two HST3 M10 anchors



Design loading capacity - 3D	1		1/3
Method			
Units discupit Design load Design load analysis 0 analysis 1.5 bit wised Live load bit wised			
Limiting components of capa	acity evaluated	in following ta	bles:
1. Steel part of the bracket	2. Anchors		3. Local checks (bearing, friction)

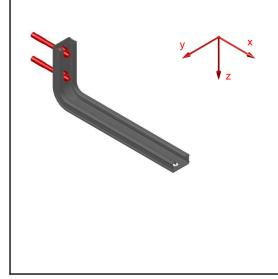
Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3


Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
1.66	2.41	4.35	4.35	10.58	10.58
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
1.04	1.04	12.50	12.50	1.04	1.04
$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}}$	- + +	$\frac{I_{x.Ed}}{I_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$	· + < 1		

2. Anchors

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
3.50	9.00	10.00	10.00	16.00	16.00
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
90.00	90.00	48.00	45.00	11.75	11.75

Note: For load cases Fy and Mx, also the anchor in slotted hole parallel to force must be statically considered.

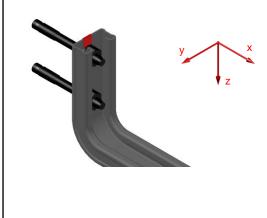
If slotted hole is not filled with dynamic set, additional deformation occur on connector to overcome slotted hole. Otherwise for unfilled holes refer to values shown in 3) which consider friction between washer and channel.

$$\begin{split} & \frac{\mathsf{F}_{x.Ed}}{\mathsf{F}_{x.Rd}} + \frac{\mathsf{M}_{y.Ed}}{\mathsf{M}_{v.Rd}} + \frac{\mathsf{M}_{z.Ed}}{\mathsf{M}_{z.Rd}} = \beta_N \leq 1 \quad \frac{\mathsf{F}_{y.Ed}}{\mathsf{F}_{y.Rd}} + \frac{\mathsf{F}_{z.Ed}}{\mathsf{F}_{z.Rd}} + \frac{\mathsf{M}_{x.Ed}}{\mathsf{M}_{x.Rd}} = \beta_V \leq 1 \\ & \beta_N + \beta_V \leq 1.2 \end{split}$$

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 68

3/3


MQK-L-21 Bracket

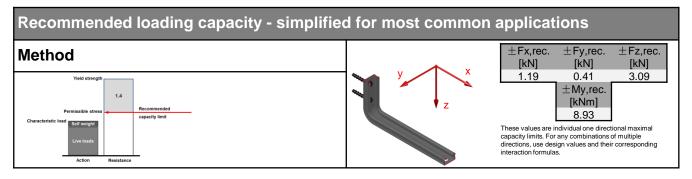
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Local checks (bearing, friction)

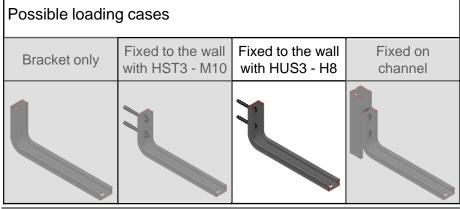
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Not decisive	Not decisive	0.57	0.57	4.32	7.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
2.29	2.29	Not deceive	Not decisive	Not decisive	Not decisive


Interaction:

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Possible loading	g cases	
Bracket only	Fixed to the wall with HST3 - M10	Fixed on channel
	and for the second seco	

Loading case: Fixed to the wall w	with HUS3 - H8	Combinations covered by loading case
BOM: 1x MQK-L-21 MQK-L-21/200 MQK-L-21/300 MQK-L-21/450 2x HUS3-H 8x55 5/-/- screw anchor 2x MQZ-E21 plastic end cap	2141924 2141925 2141926 2079794 370598	Bracket fixed to concrete (B20/25) wall with two HUS3 H 8 anchors



Design loading capacity - 3D			1/3
Method			
Design load Capacity inst Capacity			
Limiting components of capa 1. Steel part of the bracket	2. Anchors	I in following ta	3. Local checks (bearing, friction)

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
1.66	2.41	4.35	4.35	10.58	10.58
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
1.04	1.04	12.50	12.50	1.04	1.04
$\frac{1.04}{F_{x.Ed}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$					

2. Anchors

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
3.00	7.50	4.40	4.40	8.30	8.30
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
40.00	40.00	29.00	28.00	8.00	8.00

Embedment depth 60mm , concrete slab (base material) min. thickness 120mm, concrete quality >C20/25

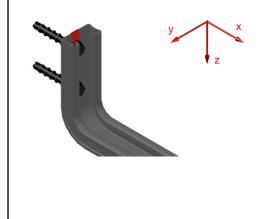
Note: For load cases Fy and Mx, also the anchor in slotted hole parallel to force must be statically considered.

If slotted hole is not filled with dynamic set, additional deformation occur on connector to overcome slotted hole. Otherwise for unfilled holes refer to values shown in 3) which consider friction between

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} = \beta_N \leq 1 - \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} = \beta_V \leq 1$

 $\beta_{N} + \beta_{V} \le 1.2$

3/3


MQK-L-21 Bracket

Design loading capacity - 3D

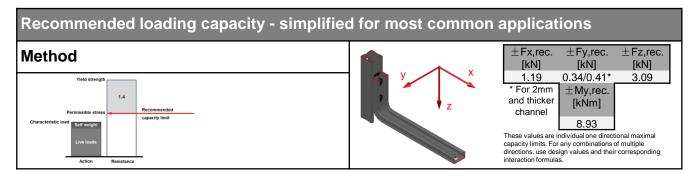
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Local checks (bearing, friction)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Not decisive	Not decisive	0.57	0.57	4.32	7.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
2.29	2.29	Not deceive	Not decisive	Not decisive	Not decisive

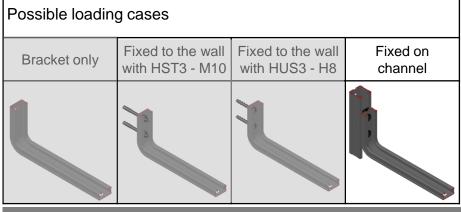
Interaction:


 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

MQK-L-21 Bracket

Possible loading cases						
Bracket only	Fixed to the wall with HST3 - M10	Fixed to the wall with HUS3 - H8	Fixed on channel			
	The second se					

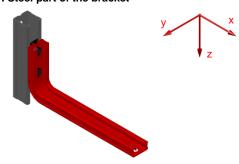
Loading case: Fixed on channe	l	Combinations covered by loading case
BOM: 1x MQK-L-21 MQK-L-21/200 MQK-L-21/300 MQK-L-21/450 2x MQM-M10 wing nut 2x M10x20 hexagon head screw 2x MQZ-E21 plastic end cap	2141924 2141925 2141926 369626 216453 370598	Bracket fixed to MQ System channel


Design loading capacity - 3D)		1/3
Method			
Ved storych Design lad Capacity linit Capacity linit Capacity linit Linit Linit Linit Linit Linit Linit Linit Linit			
Limiting components of capa	acity evaluated	in following ta	bles:
1. Steel part of the bracket	2. Wing nuts in the cl	nannel	3. Local checks (bearing, friction)

MQK-L-21 Bracket

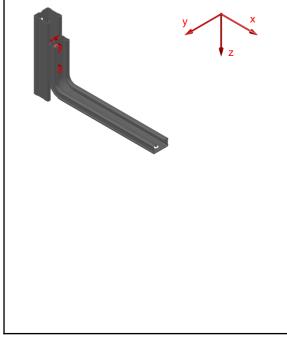
Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
1.66	2.41	4.35	4.35	10.58	10.58
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
1.04	1.04	12.50	12.50	1.04	1.04
$ \frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1 $					

2.1. Wing nuts in the channel

in MQ/2mm thick wall channel as base

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
4.35	12.64	0.69	0.69	7.00	7.00
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
6.25	6.25	46.11	44.01	11.13	11.13

Interaction:

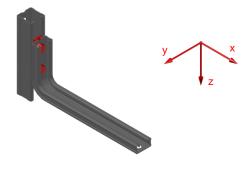
$$\label{eq:pull-out} \begin{split} & \frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1 \end{split}$$

Transverse shear (perpendicular to channel)

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Note: For load cases Fy and Mx, also the wing nut in the slotted hole parallel to force must be statically considered. Therefore additional deformation occur on connector to overcome slotted hole. Otherwise refer to values shown in 3) which consider friction between washer and channel.

3/3

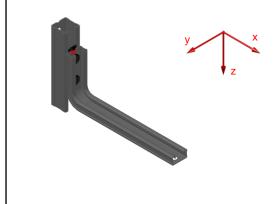

MQK-L-21 Bracket

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2.2. Wing nuts in the channel



in MQ/1.5mm thick wall channel as base						
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
2.17	7.26	0.47	0.47	7.00	7.00	
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]	
4.25	4.25	23.43	22.38	5.57	5.57	
Interaction:						
Pull-out Transverse shear (perpendicular to channel)						

Note: For load cases Fy and Mx, also the wing nut in the slotted hole parallel to force must be statically considered. Therefore additional deformation occur on connector to overcome slotted hole. Otherwise refer to values shown in 3) which consider friction between washer and channel.

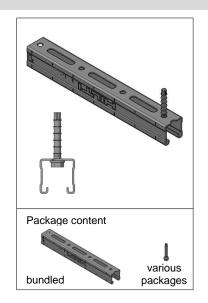
 $\frac{\mathsf{F}_{x.\mathsf{Ed}}}{\mathsf{F}_{x.\mathsf{Rd}}} + \frac{\mathsf{M}_{y.\mathsf{Ed}}}{\mathsf{M}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{z.\mathsf{Ed}}}{\mathsf{M}_{z.\mathsf{Rd}}} \leq 1 \qquad \qquad \frac{\mathsf{F}_{y.\mathsf{Ed}}}{\mathsf{F}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{x.\mathsf{Ed}}}{\mathsf{M}_{x.\mathsf{Rd}}} \leq 1$

3. Local checks (bearing, friction)

		[kN]	[kN]	[kN]	[kN]
Not decisive	Not decisive	0.57	0.57	4.32	7.92
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
2.29	2.29	Not deceive	Not decisive	Not decisive	Not decisive

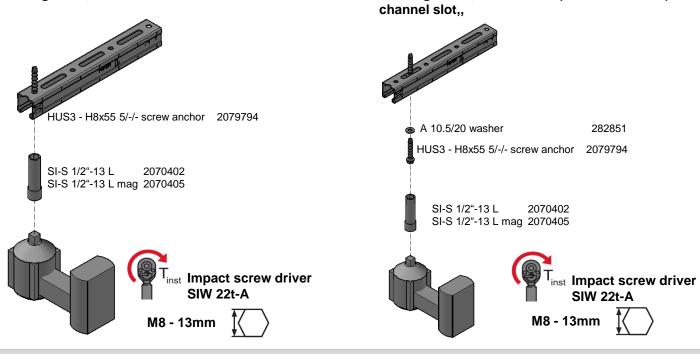
 $\frac{F_{y.Ed}}{F_{v.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MQ system light & project


Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 76

MQ System Light & Project

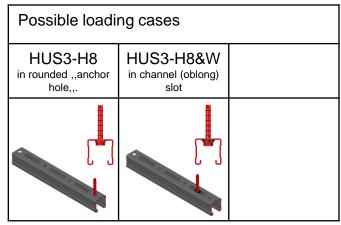
HUS3-H8 Direct fixation to concrete


Designation	Item number
Channel MQ-21 2m	2148545
MQ-21 3m	2148544
MQ-21 6m	2148543
MQ-41-L 2m	2141966
MQ-41-L 3m	2141965
MQ-41-L 6m	2141964
Screw anchor	
HUS3 - H8x55 5/-/- screw anchor	2079794
Washer for loading case HUS-H8&W in channel slot	
A 10.5/20 washer	282851
Corrosion protection:	
Channel sendzimir galvanized average 10µm	
Screw anchor zinc plated min 5µm	
Weight:	
Channel MQ-21 1430 g/m	
Channel MQ-41-L 1600 g/m	
Anchor 32.9 g	

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Channel Steel S250GD - DIN EN 10346	$F_{y} = 290 \frac{N}{mm^{2}}$	$F_{u} = 330 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Anchor Carbon steel	$F_{y} = 695 \frac{N}{mm^2}$	$F_{u} = 810 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

Simplified, not attached to the packaging Loading case "HUS3-H8 in anchor hole,,



Installation Technical Manual - Technical Data - MQ system light & project

Loading case "HUS3-H8&W (and M10 washer) in

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 77

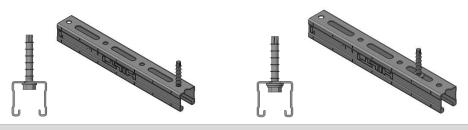
Design criteria used for loading capacity

Methodology:

· Finite element analysis

• Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	00.0014
	EN 1993-1-1	actions – densities, self-weight, imposed loads for buildings Eurocode 3: Design of steel structures – Part 1-1: General	09.2011
•	LIN 1993-1-1	rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

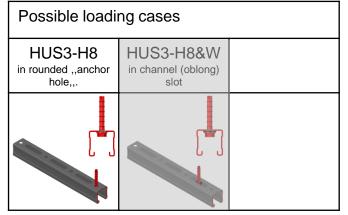
- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

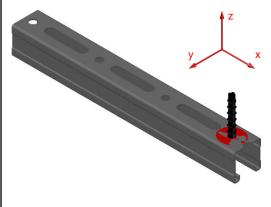
Possible loadi	ng cases		
HUS3-H8 in rounded ,,anchor hole,,.	HUS3-H8&W in channel (oblong) slot		
Loading case: H	US3-H8 in rounded	d ,,anchor hole,,.	Combinations covered by loading case
BOM: Channel Channel MQ-21 2m MQ-21 3m MQ-21 6m MQ-41-L 2m MQ-41-L 3m MQ-41-L 6m Screw anchor HUS3 - H8x55 5/-/-		2148545 2148544 2148543 2141966 2141965 2141964 2079794	Direct fixation of channel on concrete fixed by HUS3-H8 through ,,Anchor hole,, in the channel



Design loading capacity - 3D	1/2
Method	
Ved strength Capacity find Cenign tool 1.5 Live tool Action Residence	
Limiting components of capacity evaluated	in following tables:
1. Channel local pull through	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures



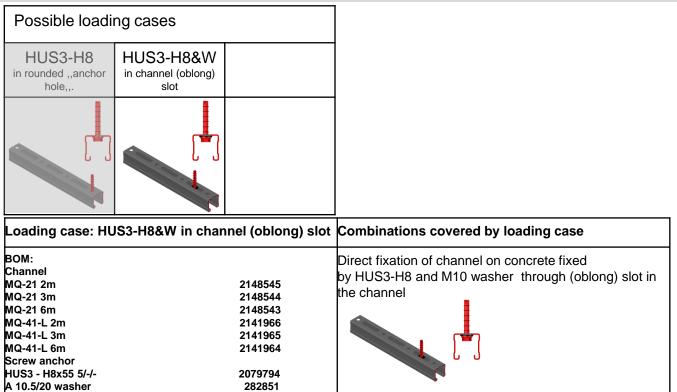
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Channel local pull through

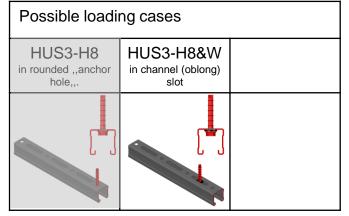
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
					4.40
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]


Condition: valid for channel edge distance ≥ 100mm, min concrete quality C20/25, no edge influence, no other anchor distance influence, min concrete slab (base material) thickness 120mm

2/2

A 10.5/20 washer

HUS3-H8 Direct fixation to concrete


Recommended loading capacity - simplified for most common applications Method ±Fz.rec. \pm Fx,rec. \pm Fy,rec. [kN] [kN] [kN] 1.4 2.89 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D	1/2
Method	
Veld stewyth Capacity inst Design bad Design bad 1.5 Live bad Acton Resetance	
Limiting components of capacity evaluated	in following tables:
1. Channel local pull through	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

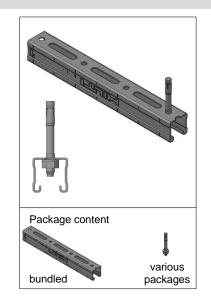
Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

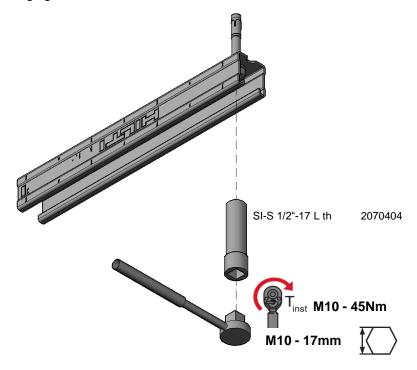
1. Channel local pull through	Z Z	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
							4.05
		+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
			20/25, no edg	iel edge dista ge influence, lab (base ma	no other and	hor distance	

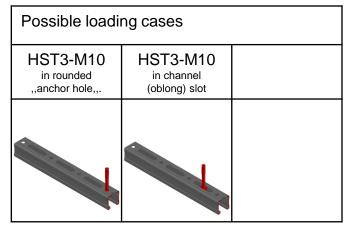
Installation Technical Manual - Technical Data - MQ system light & project


2/2

MQ System Light & Project

HST3-M10 Direct fixation to concrete


Designation	Item number
Channel	
MQ-21 2m	2148545
MQ-21 3m	2148544
MQ-21 6m	2148543
MQ-41-L 2m	2141966
MQ-41-L 3m	2141965
MQ-41-L 6m	2141964
Stud anchor	
HST3 M10x90 30/10 stud anchor	2105712
Corrosion protection:	
Channel sendzimir galvanized average 10µm	
Screw anchor zinc plated min 5µm	
Weight:	
Channel MQ-21 1430 g/m	
Channel MQ-41-L 1600 g/m	
Anchor 58.0 g	


Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Channel Steel S250GD - DIN EN 10346 Anchor	$F_y = 290 \frac{N}{mm^2}$	$F_{u} = 330 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Carbon steel	$F_{y} = 640 \frac{N}{mm^2}$	$F_{u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

Simplified, not attached to the packaging

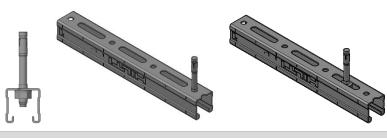
Design criteria used for loading capacity

Methodology:

· Finite element analysis

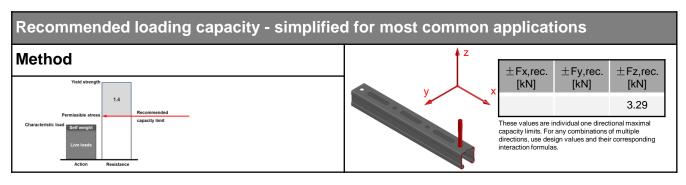
• Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:


- static loads
- no fatigue loads

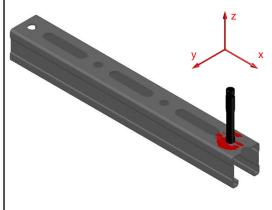
Simplified drawing:

Possible loadi	ng cases		
HST3-M10 in rounded ,,anchor hole,,.	HST3-M10 in channel (oblong) slot		
Loading case: St	tandard		Combinations covered by loading case
BOM: Channel Channel MQ-21 2m MQ-21 3m MQ-21 6m MQ-41-L 2m MQ-41-L 3m MQ-41-L 6m Screw anchor HST3 M10x90 30/10		2148545 2148544 2148543 2141966 2141965 2141964 2105712	Direct fixation of channel on concrete fixed by HST3-M10 through ,,Anchor hole,, in the channel

Design loading capacity - 3D	1/2
Method	
Ved strength Copacity lend Design load 1.5 Live word Acton Resolution	
Limiting components of capacity evaluated	in following tables:
1. Channel local pull through	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures


Possible loadi	Possible loading cases				
HST3-M10 in rounded ,,anchor hole,,.	HST3-M10 in channel (oblong) slot				

Design loading capacity - 3D

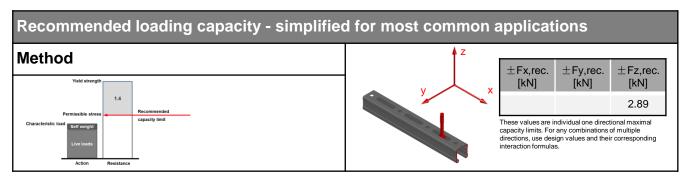
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Channel local pull through

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
					4.60
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]

Condition: valid for channel edge distance ≥ 100mm, min concrete quality C20/25, no edge influence, no other anchor distance influence, min concrete slab (base material) thickness 120mm


Installation Technical Manual - Technical Data - MQ system light & project

2/2

HST3 M10x90 30/10

HST3-M10 Direct fixation to concrete Possible loading cases HST3-M10 HST3-M10 in channel in rounded "anchor hole," (oblong) slot Loading case: Standard Combinations covered by loading case BOM: Direct fixation of channel on concrete fixed Channel by HST3-M10 through (oblong) slot in the channel Channel MQ-21 2m 2148545 MQ-21 3m 2148544 MQ-21 6m 2148543 MQ-41-L 2m 2141966 MQ-41-L 3m 2141965 MQ-41-L 6m 2141964 Screw anchor

2105712

Design loading capacity - 3D	1/2
Method	
Ved sterrigh Design bad Design bad Design bad 1.5 Live bad Action Resolution	
Limiting components of capacity evaluated	in following tables:
1. Channel local pull through	

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures

Possible loadi	Possible loading cases				
HST3-M10 in rounded ,,anchor hole,,.	HST3-M10 in channel (oblong) slot				

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Channel local pull through	z						
× ×	×	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
							4.05
		+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
			m, min concre chor distance less 120mm				

Installation Technical Manual - Technical Data - MQ system light & project

2/2

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 89

Hilti. Outperform. Outlast. Hilti Corporation I 9494 Schaan I Liechtenstein I P +423-234 2111 I <u>www.facebook.comehiltigroup</u> I www. Hilti.com