Installation Technical Manual

Typical Applications
Typical Sub-trade Applications

Heating
 Applications

Heating is the general term applied to the system used to raise and maintain the ambient temperature inside a building at a comfortable level. Several different principles are employed. Most widespread in central Europe are systems where heat is produced locally in a unit located in the plant room or associated room in or adjacent to the building. This heating unit (e.g. gas heater) heats the heating media directly, which is then distributed through the piping system to the places of final radiation (e.g. radiators or floor heating).

Other principles employed in large building complexes include the use of centralized district heating (either purpose-built heating plants or those designed to utilize waste energy, e.g. from a power plant or waste incineration plant) with a primary heating media such as steam. This primary heating media is distributed through underground pipes to local plant rooms in the buildings to be heated. The primary heating media then passes through a heat exchanger, thereby raising the temperature of the secondary heating media. The system used to distribute the secondary heating media in the building is exactly the same as in the local system described above.

Several other principles are in use mainly in Northern Europe, where local heating units are combined with air conditioning and ventilation systems. Advanced technologies associated with green building and passive building are also gaining acceptance for use in heating systems, but still on a very limited scale and generally only where very local or just-in-case back-up solutions are required.
The system described in this manual reflects the most widespread solutions found in the commercial building segment in Central Europe. The heating media begins its journey in a local heating unit or boiler in a plant room before passing through a splitter, from which various branches then continue on into pipe corridors and rising shafts for final distribution to the places of final consumption or radiation.

Heating pipes running along corridors are typically installed on common supports together with other services.

1
Single fastening
Pipes are typically suspended from the ceiling on a pair of swiveling elements or other extension elements.

Cantilever arm
Cantilever pipe support arm (pipes standing or suspended) in the form of a preassembled / pre-welded unit or assembled from individual parts with vertical or pipe axial braces.

Splitter frame

A frame made from channels supporting splitters or measuring and regulation devices of various dimensions or supporting both types of plant room equipment together.

Axial guide support frame

Frame structure designed to provide axial guidance to the pipes before and after technical compensation of expansion.

Primary heating media collector bracket
Typical solutions for underground collectors or various special pipe corridors. Frame structures suitable for various geometries and loading conditions.

 Head rail
A channel directly attached to the ceiling, typically using anchors, either through bolting the channel or fixing the channel from the bottom directly. The pipes are suspended either on swiveling or expansion elements.

Natural compensation zone trapeze
The same as application 3 , but subjected to axial and lateral pipe loads on transverse (cross) sliding elements.

Plant room equipment / switch box support frame
Frame structure typically braced between the floor and ceiling, supporting various devices, e.g. switch boxes.

Fixed points

Standard fixed point set ensuring control of the pipe expansion.

Various other applications
Includes various hybrid structures designed to support particular parts of heating systems.

Trapeze frame
A length of channel fastened to two or more vertical upright channels supporting a group of suspended or standing pipes mounted on expansion elements

Riser guides
A length of channel directly anchored to the wall using anchors. Pipe rings mounted on expansion elements provide guidance for rising pipes.

Plant room framing - 3D frame

3D frame structure supporting heavy plant room equipment e.g. boilers in various sizes and dimensions.

Riser fixed points

Standard fixed point sets to take up riser pipe loads.

Terms of common cooperation / legal disclaimers

Hilti strives to achieve continuous development and innovation. This manual is thus subject to change without notice. Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the applicable norms and standards. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use and within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature. Due to the fact that construction materials and environmental conditions vary widely, information given in this manual is solely based on principles and safety factors believed to be correct at the time they were established. The customer is ultimately responsible for checking the present condition of supporting materials and the applicability of the selected product application. Hilti shall not be liable for direct, indirect, incidental or consequential damages, losses or expenses in connection with any information contained in this manual or in connection with, or by reason of, the use of, or inability to use the products for any intended purpose. This limitation of liability does not apply to personal damages culpably caused by Hilti. Implied warranties of merchantability or fitness of the products are herewith expressly excluded.

Loading capacity limit

All loading capacity limits in this manual are to be considered as recommended values. Recommended values are calculated from the elastic limit equal to yield strength, with an applied material safety factor of 1.1 and an applied additional safety factor of 1.4.

Recommended load approach

Contents and overview of this manual

Heating applications - application options

An explanation of the information provided on each page

Heating applications - typical applications and examples

General design rules for typical situations

Insulation thickness

rubber 20 mm
_Manipulation space $\mathbf{5 0} \mathbf{~ m m}$

- for welding the pipe
- for wrapping the insulation around

Technical background information

1.0 Thermal expansion

Technical challenges and how these dictate the product requirements

Heating

The major challenge when fastening heating pipes is thermal expansion of the pipe and its impact on pipe supports and the surroundings.

Thermal expansion leads to extension of the length of the pipe and depends on three basic parameters:

Examples of materials and their coefficients of expansion

Material	Coefficient of expansion	Example for 10 m, $\Delta T 50^{\circ} \mathrm{C}$
Steel St 37-2	0.0000111	5.55 mm
Stainless steel	0.000016	8.00 mm
Cast iron	0.0000105	5.25 mm
Copper SF-Cu	0.0000168	8.40 mm
Polyethylene PE 100	0.00018	90.0 mm

2.0 Controlled expansion

Expansion must be controlled

What can happen in the event of uncontrolled expansion - the impact of expansion on pipe supports

Example showing pipes on standing supports

Example showing suspended pipes

Both cases may lead to irreversible deformation, huge displacements, wrong load re-distribution and ultimately to chain reactions causing pipe collapse.

Uncontrolled expansion - impact on supports and surroundings

What can happen in the event of uncontrolled expansion - the impact of expansion on pipe supports

It may, by coincidence, have little effect, i.e. the pipe system is able to take up the movement.

Some of the supports may detach.

An expanding element may exert pressure against the surrounding structure, which is not designed to carry these loads.

The expanding element exerts pressure between two rigid structures, thereby subjecting it to inner stress, possibly leading to breakage.

Ignoring the control of thermal expansion can have many more negative effects. The cases above represent the majority of the problems encountered in the installation of pipes.

Controlling expansion - methods used to control expansion

Expansion must be controlled. Its impact can then be predicted and calculated.

Fixed (anchor) point at one end, compensation for expansion at the other end.

Fixed (anchor) point in the middle, compensation for expansion at both ends.

Fixed (anchor) points at the ends and space designed to provide compensation for

Fixed (anchor) points at the ends and a mechanism designed to provided compen-

A system for controlling expansion always consists of a set of fixed points and a means of compensation.

3.0 Fixed point

Fixed points - placement

Generally, a good starting point is the following basic rule: For every straight section of pipe with a diameter of $21 / 2 "(76.1 \mathrm{~mm})$ or more and a length of 10 m or more, expansion must be controlled by a fixed point in the middle of the run.

Some plant room equipment may be subject to a risk of destabilization or damage by pipe axial forces. Protection at the start of the run is therefore required in some cases.

Plant room equipment with fixed point protection

Axial force caused by expansion

Plant room equipment without fixed point protection

Fixed points - loads

The basic function of a fixed (anchor) point is to anchor the pipe in a place where the building structure is designed to carry loads generated by expansion and to thus ensure zero movement of the pipe. This control of the pipe will generate certain loads due to several factors, depending on the type of compensation used:

Loads generated at a fixed point by natural compensation:
F_{CR} - Resistance of compensation (elbow, u-bend..)
$\Sigma \mathrm{F}_{\mathrm{FR}} \quad$ - Friction at all pipe supports
Information about detailed calculation can be found in the "Natural compensation" section.

Loads generated at a fixed point by technical compensation:
$\begin{array}{ll}\mathrm{F}_{\mathrm{SR}} & \text { - Load generated by spring rate of the expansion joint } \\ \mathrm{F}_{T P} & \text { - Media pipe pressure } \\ \Sigma \mathrm{F}_{\mathrm{FR}} & \text { - Friction at all pipe supports }\end{array}$
Information about detailed calculation can be found in the "Technical compensation" section.

Fixed point load transfer principles

Most of the Hilti fixed point sets work on the stand and brace principle, thereby splitting the load into two parts on a triangular principle.

Braces in Hilti fixed point sets are made from M16 threaded rods.
The threaded rod must be subjected to tension only.
The orientation of the brace must reflect this.
The brace must be subjected to tension only.
In cases where you are not sure, or the brace can be even temporarily subjected to opposite loads (when the system is heating up or cooling down), we recommend that braces are fitted on both sides.

Fixed point versus loading capacity of the structure

Placement of fixed points should always take the loading capacity of the building structure into account. The structural engineer responsible for the structure must always be consulted about the impact of the fixed point.

The cases mentioned below are examples of situations that could present a risk to the stability of the building structure or any other sub-structures.

The cases are explained on the basis of a fixed point load of 10 kN acting on an arm at a distance of 1 m from the supporting material.

$\mathrm{FFP}_{\mathrm{FP}}=10 \mathrm{kN}$

10 kN may exceed the spot loading capacity of a concrete slab and the loads acting in this way may pull out the entire anchor (on the brace of the fixed point).

Load transfer to the girder may subject it to torsion or other mechanisms that could impact its stability.

$F_{F P}=10 \mathrm{kN}$

$F_{F P}=10 \mathrm{kN}$

Hilti fixed points - product selector

Hilti fixed points sets - product solutions for light-duty fixed points

MFP-L light duty fixed points, imperial sizes
From DN 15 - DN 25
Bill of material

Description	Designation	Item no.	Axial loading capacity at 150 mm distance	Calculated
1x fixed point pipe ring	per pipe dimension			per formula depending on distance from supporting surface$\text { Frec }=95 \mathrm{Nm} / \mathrm{H}(\mathrm{~mm}) \leq 3 \mathrm{kN}$
	MFP-L NW 15 ½"	310307	1.0 kN	
	MFP-L NW 20 ½"	310308	1.0 kN	
	MFP-L NW $2511 ⁄ 2$	310309	1.0 kN	
1x base plate	MFP-GP $1 / 2{ }^{\prime \prime}$	310318		
1 x threaded pipe $1 / 2^{\prime \prime}$	GR-GP $1 / 2$ " $\times 2 \mathrm{~m}$	56428		
2x anchor M12	HST3 M12x105 30/10	2105718		

From DN 32 - DN 125

The loading capacity for distances other than 150 mm may be calculated with the aid of the formula.

The loading capacity for distances other than 150 mm may be calculated with the aid of the formula.

Hilti fixed points sets - product solutions for medium-duty

 fixed points

MFP-1a
From DN 15 - DN 250

Bill of material				
Description	Designation	Item no.	Axial loading capacity	Calculated
1x fixed point pipe ring	per pipe dimension			per formula depending on distance from supporting surface$\text { Frec }=480 \mathrm{Nm} / \mathrm{H}(\mathrm{~mm}) \leq 3 \mathrm{kN}$
	MFP NW15	243521		
	MFP NW20	243522		
	MFP 28/30	243523		
	MFP NW25	243524		
	MFP NW32	243525		
	MFP NW40	243526		
	MFP NW54/56	243527		
	MFP NW50	243528		
	MFP 63/66	243529		
	MFP 68/72	243530		
	MFP NW65	243531		
	MFP NW80	243532		
	MFP NW100	243533		
	MFP NW4"	243534		
	MFP NW 125/127	243535		
	MFP NW125	243536		
	MFP NW150	243537		
	MFP NW6"	243538		
	MFP 193/200	243539		
	MFP NW 200	243540		
	MFP 244/250	243541		
	MFP NW250	243542		
1 x basic set	MFP-B20	247827		
1x threaded pipe $1^{1 / 4} \mathbf{4}^{\prime \prime}$	GRST $11 / 4{ }^{\prime \prime} \times 2 \mathrm{~m}$	248532		
2x anchor M12	HST3 M12x105 30/10	2105718		

Distance from supporting surface $\min 140 \mathrm{~mm}$ max. 800 mm

MFP-1a sound-insulated
From DN 15 - DN 250
Bill of material

Description	Designation	Item no.	Axial loading capacity	Calculated
1x fixed point pipe ring	per pipe dimension see MFP-1a set			per formula depending on distance from supporting surface$\text { Frec }=480 \mathrm{Nm} / \mathrm{H}(\mathrm{~mm}) \leq 3 \mathrm{kN}$
1x basic set	MFP-BPI 20	254460		
1x threaded pipe $1^{1 / 1 / 4}$	GRST $11 / 4$ " $\times 2 \mathrm{~m}$	248532		
2x anchor M12	HST3 M12x105 30/10	2105718		

Hilti fixed points sets - product solutions for medium-duty fixed points

MFP-1

From DN 15 - DN 250
Bill of material
Description
$1 x$ basic set
$1 x$ bracing set
1x threaded rod M 16
1x threaded pipe $11 / 4 "$
1x anchor M 16
2x anchor M 12

Designation	Item no.	Set
per pipe dimension see MFP-1a set		-2083241
MFP-BP 20	247827	
MFP-AP1	247829	
GST M $16 \times 1 \mathrm{~m}$	216422	
GRST $11 / 4$ " $\times 2 \mathrm{~m}$	248532	
HST3 M16x135 35/15	2105858	
HST3 M12x105 30/10	2105718	

Axial loading
capacity
$3 \mathbf{k N}$

MFP-1 2x
From DN 15 - DN 250
Bill of material
Description

1x basic set	MFP-BP 20
2 x bracing set	MFP-AP1
2x threaded rod M 16	GST M 16
1 x threaded pipe $11 / 4$ "	GRST $111 / 4$ "
2x anchor M 16	HST3 M16x135 35/15
2x anchor M 12	HST3 M12x105 30/10

	Designation
	per pipe dimension see MFP-1a set
	MFP-BP 20
	MFP-AP1
	GST M 16
	GRST $111 / 4$ "
	HST3 M16x135 35/15
	HST3 M12x105 30/10

Item
по.

247827
247827
247829
3 kN

MFPI-1 sound-insulated
From DN 15 - DN 250
Bill of material
Description

	M
1x basic set	M
1x bracing set	GS
1x threaded rod M 16	G
1x threaded pipe $1 / 4 "$	H
1x anchor M 16	He

Designation	Item no.	Set
per pipe dimension see MFP-1a set		2083244
MFP-BPI 20	254460	
MFP-API 1	254461	
GST M $16 \times 1 \mathrm{~m}$	216422	
GRST $11 / 4$ " x 2 m	248532	
HST3 M16x135 35/15	2105858	
HST3 M12x105 30/10	2105718	

2105858
2105718
 216422

都
,

Hilti fixed points sets - product solutions for medium-duty fixed points

	MFP-2				
	From DN 15 - DN 250				
	Bill of material				
	Description	Designation	Item no.	Set	Axial loading capacity
	1x fixed point pipe ring	per pipe dimension			
		see MFP-1a set			
	1x basic set	MFP-BP 20	247827		
	1x bracing set	MFP-AP2	247830	20832	10 kN
	2x threaded rod M 16	GST M $16 \times 1 \mathrm{~m}$	216422		
	1x threaded pipe $1^{1 / 4} \mathbf{4}^{\prime \prime}$	GRST $11 / 4$ " $\times 2 \mathrm{~m}$	248532		
	2x anchor M 16	HST3 M16x135 35/15	2105858		
	2x anchor M 12	HST3 M12x105 30/10	2105718		

MFP-2 2x
From DN 15 - DN 250
Bill of material
Description
1x fixed point pipe ring
1x basic set
$1 x$ basic set
$2 x$ bracing set
$4 x$ threaded rod M 16
$1 x$ threaded pipe $11 / 4$ "
4x anchor M 16
2x anchor M 12

MFPI-2 sound-insulated

From DN 15 - DN 250
Bill of material

Bill of material				
Description	Designation	Item no.	Set	
1x fixed point pipe ring	per pipe dimension see MFP-1a set			
Axial loading				
capacity				

MFPI-2 2x sound-insulated
From DN 15 - DN 250
Bill of material
Description
$\mathbf{1 x}$ fixed point pipe ring

1x basic set
$2 x$ bracing set
4x threaded rod M 16
1x threaded pipe $11 / 4$ "
4x anchor M 16

2x anchor M 12

Designation
per pipe dimension see MFP-1a set
MFP-BPI 20
MFP-API2
GST M $16 \times 1 \mathrm{~m}$
GRST $11 / 4{ }^{\text {" }}$ x 2m
HST3 M16x135 35/15
HST3 M12x105 30/10

Item no.	Set	Axial loading capacity
254460		
254462		
216422		
248532		
2105858		
2105718		

Hilti fixed points sets - product solutions for medium-duty fixed points

MFP-3
From DN 15 - DN 250
Bill of material
Description

$1 x$ basic set	MFP-BP 16
$1 x$ bracing set	MFP-AP3
$2 x$ threaded rod M 16	GST M $16 \times 1 \mathrm{~m}$
$2 x$ threaded pipe $11 / 4 "$	GRST $1 / 4 " \times 2 \mathrm{~m}$
$2 x$ anchor M 20	HST3 M20x170 -/30
$4 x$ anchor M 12	HST3 M12x105 30/10

Designation
per pipe dimension
see MFP-1a set
MFP-BP 16
MFP-AP3
GST M $16 \times 1 \mathrm{~m}$
GRST $1 \mathbf{1 / 4} \times 2 \mathrm{~m}$
HST3 M20x170 -/30
HST3 M12x105 30/10

Axial loading capacity

20 kN

MFP-3 2x					
From DN 15 - DN 250					
Bill of material					:
Description	Designation	Item no.	Set	Axial loading capacity	
1x fixed point pipe ring	per pipe dimension see MFP-1a set				
1x basic set	MFP-BP 16	247826			
2 x bracing set	MFP-AP3	247831		20 kN	
4x threaded rod M 16	GST M $16 \times 1 \mathrm{~m}$	216422			
$2 x$ threaded pipe $11 / 4$ "	GRST 1 1/4" $\times 2 \mathrm{~m}$	248532			
4x anchor M 20	HST3 M20x170-/30	2105891			
4x anchor M 12	HST3 M12x105 30/10	2105718			

MFPI-3 sound-insulated
From DN 15 - DN 250
Bill of material
Description

1x basic set
1 x bracing set
2x threaded rod M 16
2x threaded pipe 1 1/4"
2x anchor M 20
4x anchor M 12

Designation
per pipe dimension see MFP-1a set

MFP-BPI 16
MFP-API3
GST M $16 \times 1 \mathrm{~m}$ GRST $11 / 4$ " \mathbf{x} 2m HST3 M20x170-/30 HST3 M12x105 30/10
$\left|\begin{array}{r}\text { Item no. } \\ \\ \\ \\ 254459 \\ 254463 \\ 216422 \\ 248532 \\ 2105891 \\ 2105718\end{array}\right|-2083246$

Axial loading capacity

20 kN

MFPI-3 2x sound-insulated
From DN 15 - DN 250
Bill of material
Description

1x basic set $2 x$ bracing set 4x threaded rod M 16 $2 x$ threaded pipe $1^{1 / 4 "}$
4x anchor M 20
4x anchor M 12

Designation
per pipe dimension
see MFP-1a set
MFP-BPI 16
MFP-API3
GST M $16 \times 1 \mathrm{~m}$
GRST $11 / 4 " \times 2 \mathrm{~m}$
HST3 M20×170 -/30
HST3 M12x105 $30 / 10$

Item no.	Set	Axial loading capacity
254459		
254463		20 kN
216422		
248532		
2105891		

4.0 Compensation

Types of compensation - natural compensation

U-bend and fixed points

Z-bend and fixed points

L-bend and fixed points

U-bend

Z-bend

L-bend

Types of compensation - technical compensation

Important notice

The expansion joint supplier must be consulted about placement of fixed points and the accommodation of expansion. His instructions regarding design and installation must be strictly followed.

Axial expansion joints

Axial expansion joints and fixed points

Angular expansion joints and fixed points

Two types of angular expansion joints:

1. Planar - one axis of rotation
2. Spatial - gimbal types

Lateral expansion joints

Two types of lateral expansion joints:

1. Planar - one axis of rotation with own control of pipe pressure
2. Spatial (circular) - multidirectional with own control of pipe pressure

Able to absorb multidirectional lateral movement

Lateral expansion joints and fixed points

Natural compensation - zones and typical solutions

Natural compensation - zones

Expansion impact zones

Upper surface of channel

Quiet zone

At this pipe zone the impact of expansion is negligible - no special measures are required.

Pipes on standing supports

Pipes on standing supports

Suspended pipes

Loading scheme

Weight

Pipe runs can be divided into zones according to the impact of expansion on the pipe supports. The zones are defined differently for pipes on standing supports and for suspended pipes.
The main factors are expansion along the pipe axis and distance from the upper surface of the channel (in the case of pipes on standing supports) and expansion along the pipe axis and distance from the underside of the supporting structure (in the case of suspended pipes).

Underside of the supporting structure

The pipe supports must be designed to take up the vertical load resulting from the weight of the pipe section (only for relevant applications). See section "Typical plumbing applications".

Expansion zone

This is the zone in which expansion begins to have an impact in axial direction. Traditional methods of pipe installation begin to run out of options and use of special expansion elements becomes necessary.
Ignoring expansion would result in torque moment in channels, significant displacement of threaded rods and irreversible deformation of several parts. All of these impacts could lead to a chain reaction and, in extreme cases, to collapse of the pipe support system.

Pipes on standing supports

Suspended pipes

$$
\forall>7^{\circ}
$$

$$
\forall<15^{\circ}
$$

In the expansion zone it is necessary to make use of expansion elements that properly distribute expansion forces to the supporting structure.
The pipe support must be designed acording the loading scheme:
$\gamma>15^{\circ}$

Loading scheme

Weight

This leads to use of special solutions:

Sliding/rolling elements

Compensation zone

Pipes on standing supports

In this zone, the expansion impact meets natural compensation achieved by the spring effect (resistance) of the system. Compensation tends to comprise movement in several directions during the heating-up or cooling-down phases. The pipe supports must therefore allow all of these movements and be able to transfer the loads properly to the supporting building structure.

Suspended pipes

$$
\forall>7^{\circ}
$$

$X>15^{\circ}$
$\quad<15^{\circ}$

Loading scheme

This leads to use of special solutions:

Cross sliding/rolling elements

Friction

$F_{\text {Weight }}=$ weight of 1 m pipe x spacing
$F_{\text {Friction }}=F_{\text {Weight }} \times \mathrm{Y}$
$\psi=$ specific friction factor for slider/roller

Every expansion element will allow pipe movement, but will generate horizontal force due to friction in the element.
As a consequence, the pipe supports are subjected to the following loads:

Two loads where double sliding/rolling elements are used.

Two loads and one moment (torsional) where single sliding/rolling elements are used.

Recommendation: Always use double sliders/rollers on open-section profiles (MQ system)

Friction - galvanized elements

*For higher temperatures above $100^{\circ} \mathrm{C}$ use reduction factors $\mathrm{k}_{\mathrm{p}, \mathrm{e}}$ as per DIN EN 1993-1-2:2005 + AC 2005 (D)

Friction - hot-dip galvanized elements

Type	Item number	Loading capacity (kN)	Friction $4\left({ }_{-}\right)$	Expansion capacity (mm)		Temperature resistance (${ }^{\circ} \mathrm{C}$)	
MSG 2.0 M10/12-F	304213	1.5	0.15	40	80	-40	+300
MRG-D6 M12/16-F	302214	6.0	0.15	58	116	-40	+300

Friction - stainless steel elements

Type	Item number	Loading capacity (kN)	Friction 4(_)	Expansion capacity (mm)		Temperature resistance $\left({ }^{\circ} \mathrm{C}\right)$	
MRG 2.0 M10/12-R	304086	1.5	0.15	40	80	-40	+300
MRG-D6 M12/16-R	304087*	6.0	0.15	58	116	-40	+300

* Manufactured only on request
$S_{\min }=\sqrt{\frac{3 E}{2 \sigma_{z u l}}} * \sqrt{\Delta L * A D}$
$\mathrm{E}=$ Modulus of elasticity of pipe material (temperature dependent)
$\sigma_{\mathrm{zul}}=$ Allowable stress on pipe material (temperature dependent and load factor included - yield stress / safety factor)
$\Delta L=L * \Delta T * \alpha$
$\Delta T=T_{\text {max. }}-\mathrm{T}_{\text {inst }}$
$\alpha=$ Coefficient of pipe material expansion
$\mathrm{L} \quad=$ Length between fixed point and bending arm
$T_{\text {max. }}=$ Max. operational temperature e.g. heating media temperature $70^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {inst }}=$ Installation temperature (temperature at which the fixed points were tightened) e.g. $20^{\circ} \mathrm{C}$
AD = Outside diameter of pipe material

Installation of a pipe support before the point of zero rotation would subject the pipe support to lateral loads and, at the same time, it would increase the load at the fixed point (the value depends on lateral resistance of the pipe support).

Elbow resistance

Point of zero rotation

The important point is the so-called point of zero rotation. It is the point where expansion has no further (negligible) influence after natural compensation.

Fixed point loads

$$
F_{F P}=F_{C R}+F_{F R}
$$

F_{CR} - Resistance of compensation (elbow, U-bend, etc.)
$\Sigma \mathrm{F}_{\mathrm{FR}}$ - Friction load in all pipe supports

$$
\mathrm{F}_{\mathrm{CR}}=\mathrm{E} \times I \times\left(\Delta \mathrm{L} \times 3 / \mathrm{s}^{3}\right)
$$

E - Modulus of elasticity
I - Moment of inertia of the pipe
$\Delta \mathrm{L}$ - Expansion of the pipe
S - Bending arm

$\mathrm{F}_{\mathrm{FR}}=\mu \times \mathrm{M} \times \mathrm{L}$

$\mu \quad$ - Friction factor
M - Weight of the pipe: 1 m , water-filled, incl. insulation
L - Length of the pipe section from fixed point to bending arm

Natural compensation - rules to follow for safe design / control of expansion

Rule no. 1

Never two fixed points on the same pipe without compensation between.

Rule no. 2

Every compensation must be accompanied by one fixed point on each side.

Rule no. 3

Natural compensation - special cases

Mainly in the industrial segment, the preferred method of achieving even more control of expansion involves placement of a fixed point at the U-bend arm.
The only difference here is that the last support and all supports up to the point of zero rotation must have cross sliding/rolling elements to allow lateral compensation.

In situations where the pipe support has to be placed very close to the elbow (between the point of zero rotation and the elbow) due to exceeding the max. spacing or loading capacity limits, the pipe supports must allow multidirectional movement and the entire frame structure must be designed to carry these vertical, axial and lateral loads. Cross sliding elements with sufficient traveling capacity must be used.

Technical compensation - zones and typical solutions

Technical compensation - zones

Expansion impact zones

Upper surface of channel

Quiet zone

At this pipe zone the impact of expansion is negligible - no special measures are required.

Pipes on standing supports

Suspended pipes

Loading scheme

Weight

Pipe runs can be divided into zones according to the impact of expansion on the pipe supports. The zones are defined differently for pipes on standing supports and for suspended pipes.
The main factors are expansion along the pipe axis and distance from the upper surface of the channel (in the case of pipes on standing supports) and expansion along the pipe axis and distance from the underside of the supporting structure (in the case of suspended pipes).

Underside of the supporting structure

The pipe supports must be designed to take up the vertical load resulting from the weight of the pipe section (only for relevant applications). See section "Typical plumbing applications".

Expansion zone

This is the zone in which expansion begins to have an impact in axial direction. Traditional methods of pipe installation begin to run out of options and use of special expansion elements becomes necessary.
Ignoring expansion would result in torque moment in channels, significant displacement of threaded rods and irreversible deformation of several parts. All of these impacts could lead to a chain reaction and, in extreme cases, to collapse of the pipe support system.

Pipes on standing supports

Suspended pipes

$$
\forall>7^{\circ}
$$

$$
\forall<15^{\circ}
$$

In the expansion zone it is necessary to make use of expansion elements that properly distribute expansion forces to the supporting structure.
The pipe support must be designed acording the loading scheme:
$\gamma>15^{\circ}$

Loading scheme

Weight

This leads to use of special solutions:

Sliding/rolling elements

Compensation zone

Uncontrolled expansion leads to irreversible deformation and in many cases to collapse of the pipe system.

In this zone, the expansion impact meets technical compensation and its resistance. Technical compensation (axial) behaves like a spring under pressure. This leads to unpredictability regarding the direction of the spring-back effect. An uncontrolled spring-back effect would lead to irreversible deformation of the expansion joint and would subject the pipe supports to unpredictable loads in unpredictable directions. The expansion joint must therefore be controlled by fitting suitably engineered axial guides at exactly the required distance from the expansion joint and at both sides of the joint.

Number (2-3) of correctly designed axial guides placed at the required distances for safe control of the expansion joint.

Loading scheme

Finding worst case combination and loading case impact on axial guidance

This leads to use of special solutions:
$2 x-3 x$ correctly designed axial guides placed at the required distance on both sides of the expansion joint.

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the
Page 40 applicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Axial guidance

Underestimation of the need for axial guidance may lead to significant problems, irreversible deformation or even collapse.

Hilti Engineering Services will help you to calculate and design the right solutions. PC software that allows you to manage the whole design of systems subjected to multidirectional loads is also available from Hilti (Hilti PROFIS Installation).

After finding the worst-case combination of loads, the loads can be entered in the 3D module of Hilti PROFIS Installation:

1. Beam model of the application
2. Set the load combination
3. 3D verification of all beams and connectors
4. Calculation report
5. ACAD/BIM export
6. Shop drawings
7. Bill of materials for the project

Fixed point loads

$$
\mathrm{F}_{\mathrm{FP}}=\mathrm{F}_{\mathrm{TP}}+\mathrm{F}_{\mathrm{SR}}+\mathrm{F}_{\mathrm{FR}}
$$

F_{TP} - Pipe pressure load
$F_{S R}$ - Spring rate load
$F_{F R} \quad$ - Friction load in all pipe supports

$\mathrm{F}_{\mathrm{TP}}=10 \times \mathrm{P} \times \mathrm{A}$

P - Design value for pressure
A - Effective area of compensator (see manufacturer's data)

$F_{S R}=\Delta L \times C$

$\Delta \mathrm{L}$ - Expansion of the pipe
C - Spring rate of the expansion joint (see manufacturer's data)
Note: In case of pre-tightened expansion joints $\mathrm{F}_{\mathrm{SR}}=2 \times \Delta \mathrm{L} \times \mathrm{C}$
$\mathrm{F}_{\mathrm{FR}}=\mu \times \mathrm{M} \times \mathrm{L}$
$\mu \quad$ - Friction factor
M - Weight of the pipe: 1m, water-filled, incl. insulation
L - Length of the pipe esction from fixed point to bending arm

Technical compensation - rules to follow for safe design / control of expansion

Rule no. 1

Never two fixed points on the same pipe without compensation between.

Rule no. 2

Every compensation must be accompanied by two fixed points - one on each side.

Rule no. 3

Every fixed point must be braced on both sides.

Rule no. 4

The fixed point between two compensations must be designed to take up a single load action - the higher of the two potential loads.

Rule no. 5

Axial expansion must be accommodated by *two or three correctly engineered axial guides on both sides at the proper distance.

Single Fastening On Concrete - M8 Options

Limitation

M8 swivel hanger		
1x	MPSG M8 swivel hanger	$\mathbf{3 3 8 9 9 4}$
1x	M8 nut	216465

M8 nut	
$\mathbf{1 x}$ M8 nut	216465

M8 pipe rings	
MP-LHI	Sizes 8mm-2"
MP-HI	Sizes 8mm-6"
MPN-LI	Sizes 8mm-2"
MPN-RC	Sizes 8mm-6"

M8 threaded rods		
1x	AM8	1000 threaded rod
1x	AM8x2000 threaded rod	339793
1x	AM8x3000 threaded rod	$\mathbf{3 3 9 7 9 4}$

M8 swivel hanger	
1x MPH M8 swivel hanger	$\mathbf{4 1 8 0 3 5}$
1x M8 nut	216465

M8 swivel hanger	
1x	MPH M8 swivel hanger

MR-L

M8 stud anchor		
1x	HST3 M8x75 -/10	2105888
	HST2 M8x75/10	2108161
1x	M8x25 coupler	216703

M8	drop in anchor
$\mathbf{1 x}$	HKD M8x30 anchor

M8 screw anchor	
$\mathbf{1 x}$	HUS-I 6×55 M8/M10

Heating Applications - Single Fastening

Type H-SF1

- Limited to 1x DN 125 (O.D. 139.7 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}=1.66 \mathrm{kN}$ recommended load

$F_{\text {max. }}=1.66 \mathrm{kN}$ recommended load

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	423180	HUS-I 6x55 M8/M10 screw anchor	1	-
(2)	418035	MPH M8 swivel hanger	2	-
(3)	216465	M8 nut	2	-
(4)	339793	AM8x1000 threaded rod	1	Depends on distance
(5)	335704	MPN-RC 5" B pipe ring	1	-

Application description
Heating - single fastening M8

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Swivel hangers
Capacity limit $1 \times$ DN125 steel

Heating Applications - Single Fastening

Type H-SF40

- Limited to 1x DN 80 (O.D. 88.9 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case $\mathrm{F}=0.76 \mathrm{kN}$ recommended load

$F_{\text {max. }}=$ approx. $0.6-0.8 \mathrm{kN}$ rec. loads - spot loading capacity of the PMS

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	$\mathbf{3 8 6 5 5 8}$	MVA-MS M8 V-hanger	1	-
(2)	$\mathbf{4 0 6 4 7 1}$	S-MS01Z 4.0x13 S screw	6	-
(3)	$\mathbf{4 1 8 0 3 5}$	MPH M8 swivel hanger	2	-
(4)	$\mathbf{2 1 6 4 6 5}$	M8 nut	2	-
(5)	$\mathbf{3 3 9 7 9 3}$	AM8x1000 threaded rod	1	Depends on distance
(6)	$\mathbf{3 8 6 4 1 4}$	MP-HI 84-93 M8/M10 pipe ring	$\mathbf{1}$	-

Application description

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Single Fastening On Concrete - M10 Options

M10 pipe rings	
MP-LHI	Sizes 8mm-2"
MP-HI	Sizes 8mm-6"
MPN-LI	Sizes 8mm-2"
MPN-RC	Sizes 8mm-6"

Limitation

M10 swivel hanger		
1x	MPSG M10 swivel hanger	$\mathbf{3 3 8 9 9 5}$
1x	M10 nut	$\mathbf{2 1 6 4 6 6}$

M10 nut	
$\mathbf{1 x ~ M 1 0 ~ n u t ~}$	216466

M10 threaded rods		
1x	AM10x1000 threaded rod	$\mathbf{3 3 9 7 9 5}$
1x	AM10x2000 threaded rod	$\mathbf{3 3 9 7 9 6}$
1x	AM10x3000 threaded rod	216418

M10 swivel hanger	
1x	MPH M10 swivel hanger
1x	M10 nut

Heating Applications - Single Fastening

Type H-SF2

- Limited to 1x DN 125 (O.D. 139.7 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}=1.66 \mathrm{kN}$ recommended load

$F_{\text {max. }}=1.8 \mathrm{kN}$ recommended load

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	423180	HUS-I 6x55 M8/M10 screw anchor	1	-
(2)	418036	MPH M10 swivel hanger	2	-
(3)	216466	M10 nut	3	-
(4)	339795	AM10x1000 threaded rod	1	Depends on distance
(5)	335704	MPN-RC 5" B pipe ring	1	-

Application description
Heating - single fastening M10

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Swivel hangers
Capacity limit $1 \times$ DN125 steel

Single Fastening On Steel - M10 Options

Heating Applications - Single Fastening

Type H-SF21

- Limited to 1x DN 125 (O.D. 139.7 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}=1.66 \mathrm{kN}$ recommended loads

Bill of materials				
Reference	Item number	Description	Piece	Length (m)
(1)	375957	MAB-11 beam clamp	1	-
(2)	216466	M10 nut	3	-
(3)	374409	MAB-S 11/13 securing strap	1	-
(4)	216392	AM10x80 threaded bolt	1	-
(5)	216704	M10x30 coupler	1	-
(6)	339795	AM10x1000 threaded rod	1	Depends on distance
(7)	418036	MPH-M10 swivel hanger	2	-
(8)	335704	MPN-RC 5" B	1	-

Application description
Heating - single fastening M10

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1

Base material Steel

Product line Beam clamps
Capacity limit $1 \times$ DN125 steel

Single Fastening On PMS - M10 Options

Heating Applications - Single Fastening

Type H-SF 41

- Limited to 1x DN 80 (O.D. 88.9 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case $\mathrm{F}=0.76 \mathrm{kN}$ recommended load

$F_{\text {max. }}=$ approx. $0.6-0.8 \mathrm{kN}$
rec. loads - spot loading capacity of the PMS

Bill of materials

| Reference | Item no. | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{3 8 6 5 5 9}$ | MVA-MS M10 V-hanger | 1 | - |
| (2) | $\mathbf{4 0 6 4 7 1}$ | S-MS 01Z 4.0x13 S screw | 6 | - |
| (3) | $\mathbf{4 1 8 0 3 6}$ | MPH-M10 swivel hanger | 2 | - |
| (4) | $\mathbf{2 1 6 4 6 6}$ | M10 nut | 2 | - |
| (5 | $\mathbf{3 3 9 7 9 5}$ | AM10x1000 threaded rod | 1 | Depends on distance |
| (6) | $\mathbf{3 8 6 4 1 4}$ | MP-HI 84-93 M8/M10 pipe ring | $\mathbf{1}$ | - |

Application
Heating - single fastening M10
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

1
Base material

Product line V-hangers
Capacity limit $1 x$ DN80 steel

Single Fastening On Concrete - M12 Options

M12 safety anchor
$\mathbf{1 x}$ HSC-I M12 $\mathbf{x 6 0}$ anchor

M12 stud anchor	
1x HST3 M12x115 40/20	2105719
1x HST2 M12x115/20	2107849
1x M12x40 coupler	216705

M12

M12 swivel hanger	
1x MPH M12 swivel hanger	418038
1x M12 nut	216467

M12 threaded rods	
1x AM12x1000 threaded rod	$\mathbf{3 3 9 7 9 7}$
1x AM12x2000 threaded rod	$\mathbf{2 1 6 4 2 0}$
1x AM12x3000 threaded rod	$\mathbf{2 1 6 4 2 1}$

M12 swivel hanger	
1x MPH M12 swivel hanger	$\mathbf{4 1 8 0 3 8}$
1x M12 nut	216467

M12 pipe rings	
MP-MI..G	Sizes 3/8" - 6"
MP-MXI	Sizes 2" - 3"

Limitation

Heating Applications - Single Fastening

Type H-SF3

- Limited to 1x DN 150 (O.D. 168.3 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	2105719	HST3 M12x115 40/20 stud anchor	1	-
(2)	216705	M12x40 coupler	1	-
(3)	418038	MPH M12 swivel hanger	2	-
(4)	216467	M12 nut	2	-
(5)	339797	AM12x1000 threaded rod	1	Depends on distance
(6)	20887	MP-MI 6" G pipe ring	1	-

Application description
Heating - single fastening M12

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material
Product line Anchors
Capacity limit $1 \times$ DN150 steel

Heating Applications - Single Fastening

Type H-SF22

- Limited to 1x DN 150 (O.D. 168.3 mm) steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}=2.32 \mathrm{kN}$ recommended load

$F_{\text {max. }}=2.4 \mathrm{kN}$ recommended load

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	375958	MAB-13 beam clamp	1	-
(2)	216467	M12 nut	3	-
(3)	374409	MAB-S 11/13 securing strap	1	-
(4)	216399	AM 12x100 threaded bolt	1	-
(5)	216705	M12x40 coupler	1	-
(6)	339797	AM12x1000 threaded rod	1	Depends on distance
(7)	418038	MPH M12 swivel hanger	2	-
(8)	20887	MP-MI 6" G pipe ring	1	-

Application description

Heating - single fastening M12

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Steel
Product line Beam clamps
Capacity limit $1 \times$ DN150 steel

Single Fastening On Concrete - M8 Options

M8 sliding point	
Slider 1x MSG 1.75 M8/M10D Anchor	248209
2x HUS3-H 8x55/-/- screw anchor	2079794
or	
2x HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847
2x M8 threaded bolt	
AM8x30	216379
AM8x40	216380
AM8x50	216381
AM8x60	216382
AM8x70	216383
AM8x80	216384
AM8x100	216385
AM8x120	216386
AM8x150	216387
AM8x180	216388

M8 pipe rings	
MP-LHI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MP-HI	Sizes $8 \mathrm{~mm}-\mathbf{6 " ~}^{\prime \prime}$
MPN-LI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MPN-RC	Sizes $8 \mathrm{~mm}-\mathbf{6}^{\prime \prime}$

Application description	Application	Product lines	Base material
Heating - single fastening M8		Anchors	Concrete
General comments		Sliders / rollers	
- Application subject to thermal expansion impact, no seismic, no fatigue no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Pipe rings	

Heating Applications - Single Fastening

Type H-SF5

- Limited to 1x DN 50 (O.D. 60.3 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}_{\mathrm{w}}=0.25 \mathrm{kN}$ recommended load

Bill of materials				
Reference	Item number	Description	Piece	Length (m)
(1)	248205	MSG 1.0 M8/M10 slider	1	-
(2)	2079794	HUS3-H 8x55/-/-screw anchor	2	-
(3)	216381	AM8x50 threaded bolt	1	-
(4)	386411	MP-HI 59-66 M8/M10	1	-

Application description
Heating - single fastening M8

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Sliders, anchors
Capacity limit 1x DN50 steel

Heating Applications - Single Fastening

Type H-SF6

- Limited to 1x DN 80 (O.D. 88.9 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$F_{w}=0.51 \mathrm{kN}$ recommended loads

$F_{\text {max. }}=0.51 \mathrm{kN}$ recommended loads

Bill of materials

| Reference | Item number | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{2 4 8 2 0 9}$ | MSG 1.75 M8/M10 slider | 1 | - |
| (2) | $\mathbf{2 0 7 9 7 9 4}$ | HUS3-H 8x55/-/- screw anchor | 2 | - |
| (3) | $\mathbf{2 1 6 3 8 0}$ | AM8x40 threaded bolt | 2 | - |
| (4) | $\mathbf{3 8 6 4 1 4}$ | MP-HI 84-93 M8/M10 | 2 | - |

Application description
Heating - single fastening M8

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line Sliders, anchors
Capacity limit 1x DN80 steel

Single Fastening On Concrete - M10 Options

Application description	Application	Product lines	Base material
Heating - single fastening M10		Anchors	Concrete
General comments		Sliders / rollers	
- Application subject to thermal expansion impact, no seismic, no fatigue no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Pipe rings	

Heating Applications - Single Fastening

Type H-SF7

- Limited to 1x DN 80 (O.D. 88.9 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}_{\mathrm{w}}=0.51 \mathrm{kN}$ recommended load

$F_{\text {max. }}=0.55 \mathrm{kN}$ recommended load

Bill of materials

Reference
(1)
(2)
(3)
(4)

Item number	Description	Piece	Length (m)
$\mathbf{2 4 8 2 0 5}$	MSG $\mathbf{1 . 0}$ M8/M10 slider	1	-
$\mathbf{2 0 7 9 7 9 4}$	HUS3-H 8x55/-/- screw anchor	2	-
$\mathbf{2 1 6 3 8 9}$	AM10x30 threaded bolt	1	-
$\mathbf{3 8 6 4 1 4}$	MP-HI 84-93 M8/M10 pipe ring	1	-

Application description
Heating - single fastening M10

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Sliders, anchors
Capacity limit $1 x$ DN80 steel

Heating Applications - Single Fastening

Type H-SF8

- Limited to 1x DN 100 (O.D. 108 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$F_{w}=0.68 \mathrm{kN}$ recommended loads

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	248209	MSG 1.75 M8/M10 slider	1	-
(2)	2079794	HUS3-H 8x55/-/- screw anchor	2	-
(3)	216392	AM10x80 threaded bolt	2	-
(4)	386416	MP-HI 101-110 M8/M10	2	-

Application description
Heating - single fastening M10

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base materia
Product line
Capacity limit
Capacity limit $1 x$ DN100 steel

Single Fastening On Concrete - M12 Options

M12 sliding point	
Roller	
1x MRG 4.0 M12/M16	243551
Anchor	
2x HUS3-H 10x60 5/-/- screw anchor	2079911
or	
2x HST3 M12x105 30/10 stud anchor	2105718
\quad HST2 M12x105/10 stud anchor	2107848
1x M12 threaded bolt	
AM12x50	216397
AM12x80	216398
AM12x100	216399
AM12x120	216400
AM12x150	216401
AM12x200	216402

M12 pipe rings	
MP-PI..M12	Sizes $219 \mathrm{~mm}-\mathbf{3 2 6 m m}$
MP-MI..G	Sizes 3/8" - 6" $^{\prime \prime}$
MP-MXI	Sizes 2" $-\mathbf{3}^{\prime \prime}$

| M12 sliding point |
| :--- | :--- | :--- |
| Roller |
| 1x MRG 2.0 M10/M12 |
| Anchor |
| 2x HUS3-H 8x55/-/- screw anchor |
| or |
| 2x HST3 M10x90 30/10 stud anchor |
| HST2 M10x90/10 stud anchor |
| 1x M12 threaded bolt |

M12 sliding point	
Roller	
1x MRG-D6 roller	334131
Anchor	
2x HUS3-H 10x60 5/-/-screw anchor	2079911
or	
2x HST3 M12x105 30/10 stud anchor	2105718
\quadHST2 M12x105/10 stud anchor 2107848 2x M12 threaded bolt	

M12 sliding point	
Roller	
1x MRG-D 225 M12/M16	237394
Anchor	
2x HUS3-H 10x60 5/-/- screw anchor or	2079911
2x HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848
2x M12 threaded bolt	

Application description
Heating - single fastening M12
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Single Fastening

Type H-SF9

- Limited to 1x DN 125 (O.D. 133.0 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$\mathrm{F}_{\mathrm{w}}=0.93 \mathrm{kN}$ recommended load

$F_{\text {max. }}=0.98 \mathrm{kN}$ recommended load

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	248210	MSG 1.75 M12/M16 slider	1	-
(2)	2079794	HUS3-H 8x55/-/-screw anchor	2	-
(3)	216401	AM12x100 threaded bolt	2	-
(4)	20879	MP-MI 133 G pipe ring	2	-

Application description

Heating - single fastening M12

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Sliders, anchors
Capacity limit 1x DN125 concrete

Heating Applications - Single Fastening

Type H-SF10

- Limited to 1x DN 125 (O.D. 133.0 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
F $=0.93 \mathrm{kN}$ recommended load

$F_{\text {max. }}=0.96 \mathrm{kN}$ recommended load

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	243550	MRG 2.0 M10/M12 roller	1	-
(2)	2079911	HUS3-H 10x60 5/-/- screw anchor	2	-
(3)	216400	AM12x120 threaded bolt	1	-
(4)	20879	MP-MI 133 G pipe ring	1	-

Application description
Heating - single fastening M12

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base materia
Product line Rollers, anchors
Capacity limit $1 \times$ DN125 concrete

Heating Applications - Single Fastening

Type H-SF11

- Limited to 1x DN 150 (O.D. 168.3 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
F $=1.35 \mathrm{kN}$ recommended load

$F_{\text {max. }}=1.44 \mathrm{kN}$ recommended load

Bill of materials				
Reference	Item number	Description	Piece	Length (m)
(1)	334131	MRG-D6	1	-
(2)	2079911	HUS3-H 10x60 5/-/-screw anchor	2	-
(3)	339797	AM12x1000 threaded rod	2	0.18
(4)	20887	MP-MI 6" G pipe ring	2	-

Application description

Heating - single fastening M12

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Rollers, anchors
Capacity limit 1x DN150 concrete

Single Fastening On Concrete - M16 Options

M16 sliding point	
Roller	
1x MRG 4.0 M12/M16	243551
Anchor	
2x HUS3-H 10x60 5/-/- screw anchor	2079911
or	
2x HST3 M12x105 30/10 stud anchor	2105718
\quad HST2 M12x105/10 stud anchor	2107848
1x M16 threaded bolt	
AM16x60	212634
AM16x80	216403
AM16x100	212635
AM16x150	212636

M16 sliding point	
Slider	
1x MSG 1.75 M12/M16D	248210
Anchor	
2x HUS3-H 8x55/-/- screw anchor	2079794
or	
2x HST3 M10x90 30/10 stud anchor	2105712
\quad HST2 M10x90/10 stud anchor	2107847
2x M16 threaded bolt	

M16 sliding point	
Slider 1x MSG 1.0 M12/M16 Anchor	248206
2x HUS3-H 8x55/-/- screw anchor	2079794
or	
2x HST3 M10x90 30/10 stud anchor HST2 M10x90/10 stud anchor 1x M16 threaded bolt	2105712

M16 sliding point	
Roller	
1x MRG-D 225 M12/M16	237394
Anchor	
2x HUS3-H 10x60 5/-/- screw anchor	2079911
or	
2x HST3 M12x105 30/10 stud anchor	2105718
\quadHST2 M12x105/10 stud anchor 2x M16 threaded bolt	2107848

M16 pipe rings	
MP-MI..C	Sizes 4" $\mathbf{2 4 4 . 5} \mathrm{mm}$
MP-MXI..M16	Sizes 4" $\mathbf{5 0 8 \mathrm { mm }}$

M16 sliding point	
Roller	
1x MRG-D6 roller	334131
Anchor	
2x HUS3-H 10x60 5/-/- screw anchor	2079911
or	
2x HST3 M12x105 30/10 stud anchor 2105718 \quad HST2 M12x105/1 stud anchor 2107848 2x M16 threaded bolt	

Application description
Heating - single fastening M 16
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Single Fastening

Type H-SF12

- Limited to 1x DN 125 (O.D. 133.0 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
F=0.93 kN recommended load

$F_{\text {max. }}=1.0 \mathrm{kN}$ recommended load

Bill of materials

| Reference | Item number | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{2 4 8 2 0 6}$ | MSG 1.0 M12/M16 slider | 1 | - |
| (2) | $\mathbf{2 0 7 9 7 9 4}$ | HUS3-H 8x55/-/- screw anchor | 2 | - |
| (3) | $\mathbf{2 1 2 6 3 5}$ | AM16x150 threaded bolt | 1 | - |
| (4) | $\mathbf{2 0 8 8 0}$ | MP-MI 133 C pipe ring | 1 | - |

Application description
Heating - single fastening M16

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1
Base material Concrete
Product line Rollers, anchors
Capacity limit 1x DN125 concrete

Heating Applications - Single Fastening

Type H-SF13

- Limited to 1x DN 200 (O.D. 219.1 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Bill of materials

| Reference | Item number | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{2 4 3 5 5 1}$ | MRG 4.0 M12/M16 | 1 | - |
| (2) | $\mathbf{2 0 7 9 9 1 1}$ | HUS3-H 10x60 5/-/- screw anchor | 2 | - |
| (3) | $\mathbf{2 1 6 4 0 3}$ | AM16x80 threaded bolt | 1 | - |
| (4) | $\mathbf{2 0 8 9 6}$ | MP-MI 219.1 C pipe ring | 1 | - |

Application description
Heating - single fastening M16

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Product line Rollers, anchors
Capacity limit 1x DN200 concrete

Heating Applications - Single Fastening

Type H-SF14

- Limited to 1x DN 200 (O.D. 219.1 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Bill of materials

Reference
(1)
(2)
(3)
(4)

Item number	Description	Piece	Length (m)
$\mathbf{2 3 7 3 9 4}$	MRG-D225 M12/M16 roller	1	-
$\mathbf{2 0 7 9 9 1 1}$	HUS3-H 10x60 5/-/- screw anchor	2	-
$\mathbf{2 1 6 4 2 2}$	AM16x1000 threaded rod	2	0.18
$\mathbf{2 0 8 9 6}$	MP-MI 219.1 C pipe ring	$\mathbf{1}$	-

Application description
Heating - single fastening M16

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
1

Base material Concrete
Product line Rollers, anchors
Capacity limit 1x DN200 concrete

Heating Applications - Single Fastening

Type H-SF15

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Spacing - support distance 3 m
- Insulation 40 mm rubber

Additional loading capacity limits
This particular case
$F=3.12 \mathrm{kN}$ recommended loads

$F_{\text {max }}=3.29 \mathrm{kN}$ recommended loads

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	334131	MRG-D6 M12/M16 roller	1	-
(2)	2079911	HUS3-H 10x60 5/-/- screw anchor	2	-
(3)	212636	AM16x150 threaded bolt	2	-
(4)	372240	MP-MXI 267/274 M16 pipe ring	2	-

Application description
Heating - single fastening M16

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Product line Rollers, anchors
Capacity limit 1x DN250 concrete

Head Rail On Concrete -
 Options For Connection To Concrete

| Application description | Application | Product lines | Base material | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Heating - head rail | | MQ System | Concrete | |
| General comments | | | Anchors | |
| | | | | |
| - Application subject to thermal expansion impact, no seismic, no fatigue, | | | | |
| no high/low temperature impact | | | | |
| - Loading and load impact must always be compared with 3D capacity | | | | |
| limits for every single part of the application | | | | |

Head Rail On Concrete -
 Options For M8, M10 Pipe Connections

Heating Applications - Head Rail

Type H-HR1

- Limited to max. 4 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4x DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Reference	Item number	Description	Piece	Length (m)
(1)	369584	MQ-21 3 m channel	1	0.79
(2)	2079911	HUS3-H 10x60 5/-/- screw anchor	2	-
(3)	370598	MQZ-E21 end cap	2	-
(4)	369629	MQA-M8 saddle nut	4	-
(5)	418035	MPH M8 swivel hanger	8	-
(6)	216465	M8 nut	8	Depends on distance
(7)	339793	AM8x1000 threaded rod	4	-
(8)	386414	MP-HI 84-93 M8/M10 pipe ring	4	-

Application description
Heating - head rail

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material	Concrete
Product line	MQ system, swivel
Capacity limit	$4 \times$ DN 80 concrete

Heating Applications - Head Rail

Type H-HR2

- Limited to max. 4 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4x DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369589	MQ-31 3 m channel	1	0.9
(2)	369680	MQZ-L13 square washer	2	-
(3)	2105851	HST3 M12x145 70/50 stud anchor	2	-
(4)	369686	MQZ-E31 end cap	2	-
(5)	369626	MQM-M10 wing nut	8	-
(6)	216454	M10x25 screw	8	-
(7)	248209	MSG 1.75 M8/10D slider	4	-
(8)	216382	AM 8x 60 threaded bolt	8	-
(9)	386414	MP-HI 84-93 M8/M10 pipe ring	8	-

Application description	Application		
Heating - head rail		Base material	Concrete
General comments		Product line	MQ system, swivel
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Capacity limit	$4 \times$ DN 80 concrete

Heating Applications - Head Rail

Type H-HR3

- Limited to max. $4 \times$ DN 125 (O.D. 133.0 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4x DN 125 (O.D. 133.0 mm) water-filled steel pipe

Bill of materials

Reference
(1)
(2)

Item no.	Description	Piece	Length (m)
$\mathbf{3 6 9 5 9 1}$	MQ-41 \mathbf{m} channel	1	1.08
$\mathbf{3 6 9 6 8 0}$	MQZ-L13 square washer	2	-
$\mathbf{2 1 0 5 8 5 1}$	HST3 M12x145 $\mathbf{7 0 / 5 0}$ stud anchor	2	-
$\mathbf{3 6 9 6 8 5}$	MQZ-E41 end cap	2	-
$\mathbf{3 6 9 6 2 6}$	MQM-M10 wing nut	8	-
$\mathbf{2 1 6 4 5 4}$	M10x25 screw	8	-
$\mathbf{2 4 8 2 0 9}$	MSG 1.75 M8/10D slider	4	-
$\mathbf{2 1 6 3 9 0}$	AM10x40 threaded bolt	8	-
$\mathbf{3 8 6 4 1 9}$	MP-HI 129 - 137 pipe ring	8	-

Application description	Application	Base material	
Heating - head rail			Concrete
General comments		Product line	MQ system, swivel
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Capacity limit	$4 \times$ DN 125 concrete

Head Rail On Concrete Options For M12, M16 Pipe Connections

Heating Applications - Head Rail

Type H-HR4

- Limited to max. $4 \times$ DN 200 (O.D. 219.1 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4x DN 200 (O.D. 219.1 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369599	MQ-72 6 m channel	1	1.33
(2)	369680	MQZ-L13 square washer	2	-
(3)	2105853	HST3 M12x185 110/90 stud anchor	2	-
(4)	369685	MQZ-E41 end cap	2	-
(5)	369686	MQZ-E31 end cap	2	-
(6)	369631	MQA-M12-B saddle nut	4	-
(7)	418038	MPH-M12 swivel hanger	8	-
(8)	216467	M12 nut	8	-
(9)	339797	AM12x1000 threaded rod	4	Depends on distance
(10)	2073484	MP-PI 218-226 8" M12 pipe ring	4	-

Application description
Heating - head rail

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material	Concrete
Product line	MQ system, swivel
Capacity limit	$4 \times$ DN 200 concrete

Heating Applications - Head Rail

Type H-HR5

- Limited to max. $4 \times$ DN 150 (O.D. 159.0 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4x DN 150 (O.D. 159.0 mm) water-filled steel pipe

Bill of materials Reference	Item no.	Description	Piece	Length (m)
(1)	369596	MQ-41/3 3 m channel	1	1.12
(2)	369680	MQZ-L13 square washer	2	-
(3)	2105851	HST3 M12x145 70/50 stud anchor	2	-
(4)	369685	MQZ-E41 end cap	2	-
(5)	248210	MSG 1.75 M12/16D slider	4	-
(6)	369626	MQM-M10 wing nut	8	-
(7)	216454	M10x25 screw	8	-
(8)	216398	AM12x80 threaded bolt	8	-
(9)	20885	MP-MI 159 G pipe ring	4	-

Application description	Application		
Heating - head rail	12	Base material	Concrete
General comments		Product line	MQ system, swivel
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Capacity limit	$4 \times$ DN 150 concrete

Heating Applications - Head Rail

Type H-HR6

- Limited to max. $2 \times$ DN 200 (O.D. 219.1 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 2x DN 200 (O.D. 219.1 mm) water-filled steel pipe

Bill of materials

Reference

(1)	$\mathbf{3 6 9 5 9 1}$	MQ-41 3 m channel	-	0.81
(2)	$\mathbf{3 6 9 6 8 0}$	MQZ-L13 square washer	2	-
(3)	$\mathbf{2 1 0 5 8 5 1}$	HST3 M12x145 70/50 stud anchor	2	-
(4)	369685	MQZ-E41 end cap	2	-
(5)	$\mathbf{3 6 9 6 2 7}$	MQM-M12 wing nut	4	-
(6)	$\mathbf{2 1 6 4 5 8}$	M12x25 screw	4	-
(7)	$\mathbf{3 3 4 1 3 1}$	MRG-D6 M12/M16 roller	2	-
(8)	$\mathbf{2 1 6 4 2 2}$	AM16x1000 threaded rod	4	0.08
(9)	$\mathbf{3 7 2 2 3 8}$	MP-MXI 219 M16 pipe ring	4	-

Application description	Application		
Heating - head rail	\& 2	Base material	Concrete
General comments		Product line	MQ system, rollers
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Capacity limit	$2 \times$ DN 200 concrete

Head Rail On Concrete -
Options For 1/2", 3/4" Pipe Connections
$1 / 2$ " threaded pipe solutions

$3 / 4$ " threaded pipe solutions

Double roller in channel	
1x MRG-D6 M12/M16 roller	334131
2x MQM-M12 wing nut	369627
2x M12x25 hexagon screw	216458
2x MRA 1/2" M16 adapter	338992
2x $1 / 2$ " threaded pipe GR-G 1/2"x2000	56428

$1 / 2{ }^{\prime \prime}$ connection boss pipe rings	
MP-MI..DL	Sizes 3/4"- $2 "$
MP-MXI..M16	Sizes 4" -508 mm

Double roller in channel	
1x MRG-D6 M12/M16 roller	334131
2x MQM-M12 wing nut	369627
2x M12x25 hexagon screw	216458
2x MRA 3/4" M16 adapter	338993
2x 3/4" threaded pipe GR-G 3/4"x2000	56429

3/4" connection boss pipe rings	
MP-MI..EL Sizes	$\mathbf{1 1 7 \mathrm { mm } - \mathbf { 2 6 7 } \mathbf { ~ m m }}$
MP-MXI..3/4"	Sizes 2"- $\mathbf{1 3 3} \mathbf{~ m m}$

Application description	Application	Product lines	Base material
Heating - head rail		MQ System	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Expansion elements	

Heating Applications - Head Rail

Type H-HR7

- Limited to max. $2 \times$ DN 200 (O.D. 219.1 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $2 \times$ DN 200 (O.D. 219.1 mm) water-filled steel pipe

Bill of materials

Reference
(1)

Item no.	Description	Piece	Length (m)
$\mathbf{3 6 9 5 9 1}$	MQ-41 $\mathbf{~ m}$ channel	-	0.81
$\mathbf{3 6 9 6 8 0}$	MQZ-L13 square washer	2	-
$\mathbf{2 1 0 5 8 5 1}$	HST3 M12x145 70/50 stud anchor	2	-
$\mathbf{3 6 9 6 8 5}$	MQZ-E41 end cap	2	-
$\mathbf{3 6 9 6 2 7}$	MQM-M12 wing nut	4	-
$\mathbf{2 1 6 4 5 8}$	M12x25 screw	4	-
$\mathbf{3 3 4 1 3 1}$	MRG-D6 M12/M16 roller	2	-
$\mathbf{3 3 8 9 9 3}$	MRA 3/4" M16 adapter	4	-
$\mathbf{5 6 4 2 9}$	GR-G 3/4" $\mathbf{x} \mathbf{2 0 0 0}$ threaded pipe	4	0.1
$\mathbf{2 0 8 9 5}$	MP-MI 212 EL pipe ring	4	-

Application description

Heating - head rail

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material	Concrete
Product line	MQ system, rollers
Capacity limit	$2 \times$ DN 200 concrete

Trapeze On Concrete - Main Frame Options

Open section of vertical profiles facing the inside of the trapeze

41 format cantilever arms 4-hole base
MQK-41/600/4
MQK-41/1000/4

Trapeze On Concrete - Main Frame Options

Open section of vertical profiles facing pipe axis

Trapeze On Concrete - Main Frame Options: Vertical Upright

Assembly options

MQP 21-72 Channel base with multidirectional	
connection associated channels	
1x MQP 21-72 channel base	
2x MQN push button	$\mathbf{3 6 9 6 5 1}$
41 mm format channels	369623
MQ-41 2m	
MQ-41 3m	304559
MQ-41 6m	369591
MQ-41 3m LL	369592
MQ-41 6m LL	2048100
MQ-41/3 3m	$\mathbf{2 0 4 8 1 0 1}$
MQ-41/3 6m	369596
MQ-41 U 6m	369597
MQ-21D 3m	369601
MQ-21D 6 m	$\mathbf{3 6 9 6 0 2}$

MQP 21-72 Channel base with one direction connection associated channels
1x MQP 21-72 channel base 369651 2x MQN push button
52 and 72 mm format channels
MQ-52 3m
MQ-52 6m
MQ-72 3m
MQ-72 6m
MQ-72 6 m U 369623
370593

MQ-21D Centric connection

MQP 124 Channel base with associated channels
1x MQP 124 channel base 369653
4x MQN push button 369623
41D mm format channels
MQ-52-72 D 3m 373799
MQ-52-72 D 6m 369605
MQ-124X D 6m 369606

MQP 82 Channel base with associated channels
1x MQP 82 channel base 369652
4x MQN push button 36962341D mm format channels
MQ-41D 6m 369604

Application description	Application	Product lines	Base material
Heating - trapeze frame	\% 3	MQ System	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Trapeze On Concrete -
 Quiet Zone Pipe Fastening M8, M10

Quiet zone solutions M8

Trapeze On Concrete -
 Quiet Zone Pipe Fastening M12, M16

Quiet zone solutions M12

Quiet zone solutions M16

Application description	Application	Product lines	Base material
Heating - trapeze frame		MQ System	Concrete
General comments		Pipe rings	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Trapeze On Concrete -
 Quiet Zone Pipe Fastening $1 / 2^{11}$, 3/4"

Trapeze On Concrete -
 Expansion Zone Pipe Fastening M8, M10

Expansion zone solutions M8

Double slider in channel	
1x MSG 1.75 M8/M10 slider	248209
2x MQM-M10 wing nut	369626
2x M10x25 hexagon screw	216454
2x M8 threaded bolts	
AM 8x 30	216379
AM 8x 40	216380
AM 8x 50	216381
AM 8x 60	216382
AM 8x 70	216383
AM 8x 80	216384
AM 8x100	216385
AM 8x120	216386
AM 8x150	216387
AM 8x180	216388

M8 pipe rings	
MP-LHI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MP-HI	Sizes $8 \mathrm{~mm}-6 "$
MPN-LI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MPN-RC	Sizes $8 \mathrm{~mm}-6 "$

Expansion zone solutions M10

Double slider in channel	
1x MSG 1.75 M8/M10 slider	248209
2x MQM-M10 wing nut	369626
2x M10x25 hexagon screw	216454
2x M10 threaded bolts	
AM10x40	216390
AM10x60	216391
AM10x80	216392
AM10x100	216393
AM10x120	216394
AM10x150	216395
AM10x180	216396

M10 pipe rings	
MP-LHI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MP-HI	Sizes $8 \mathrm{~mm}-\mathbf{6 "}^{\prime \prime}$
MPN-LI	Sizes $8 \mathrm{~mm}-\mathbf{2 " ~}^{\prime \prime}$
MPN-RC	Sizes $8 \mathrm{~mm}-\mathbf{6 "}^{\prime \prime}$

Application description	Application	Product lines	Base material
Heating - trapeze frame		MQ System	Concrete
General comments		Pipe rings	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Trapeze Frame

Type H-T1

- Limited to max. $2 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $2 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369584	MQ-21 3 m channel	1	0.44
(2)	369608	MQK-21/450 bracket	2	-
(3)	369656	MQW-3 connector	2	-
(4)	369623	MQN push button	6	-
(5)	2105718	HST3 M12x105 30/10 stud anchor	4	-
(6)	370598	MQZ-E21 plastic end cap	2	-
(7)	386414	MP-HI 84-93 M8/M10 pipe ring	4	-
(8)	248209	MSG 1.75 M8/10D double slider	2	-
(9)	369626	MQM-M10 wing nut	4	-
(10)	216454	M10x25 hexagonal screw	4	-
(11)	216380	AM8x40 threaded bolt	4	-

Application description

Heating - trapeze frame

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material	Concrete
Product line	MQ system, sliders
Capacity limit	$2 \times$ DN 80 concrete

Capacity limit $2 \times$ DN 80 concrete

Heating Applications - Trapeze Frame

Type H-T2

- Limited to max. 4 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Heating Applications - Trapeze Frame

Type H-T3

- Limited to max. $4 \times$ DN 100 (O.D. 108 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. 4 x DN 100 (O.D. 108 mm) water-filled steel pipe

Bill of materials

| Reference | Item no. | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{3 6 9 5 9 1}$ | MQ-41 3m channel | 1 | 0.91 |
| (2) | $\mathbf{3 6 9 6 1 2}$ | MQK-41/1000 bracket | 2 | - |
| (3) | $\mathbf{3 6 9 6 5 8}$ | MQW-4 connector | 2 | - |
| (4) | $\mathbf{3 6 9 6 2 3}$ | MQN push button | 4 | - |
| (5) | $\mathbf{2 1 0 5 7 1 8}$ | HST3 M12x105 30/10 stud anchor | 4 | - |
| (6) | $\mathbf{3 6 9 6 8 5}$ | MQZ-E41 plastic end cap | 2 | - |
| (7) | $\mathbf{3 3 5 6 9 6}$ | MPN-RC 110 B pipe ring | 8 | - |
| (8) | $\mathbf{2 4 8 2 0 9}$ | MSG 1.75 M8/10D double slider | 4 | - |
| (9) | $\mathbf{3 6 9 6 2 6}$ | MQM-M10 wing nut | 8 | - |
| (10) | $\mathbf{2 1 6 4 5 4}$ | M10x25 hexagonal screw | 8 | - |
| (11) | $\mathbf{2 1 6 3 9 1}$ | AM10x60 threaded bolt | 8 | - |

Application description

Heating - trapeze frame

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ system, sliders
Capacity limit
$4 \times$ DN 100 concrete

Trapeze On Conorete -
 Expansion Zone Pipe Fastening M12, M16

Expansion zone solutions M12

Double roller in channel	
1x MRG-D6 M12/M16 roller	334131
2x MQM-M12 wing nut	369627
2x M12x25 hexagon screw	216458
2x M12 threaded bolts	
AM12x50	216397
AM12x80	216398
AM12x100	216399
AM12x120	216400
AM12x150	216401
AM12x200	216402

Expansion zone solutions M16

Heating Applications - Trapeze Frame

Type H-T4

- Limited to max. $4 \times$ DN 150 (O.D. 159 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 150 (O.D. 159 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	373797	MQ-72 3 m channel	1	1.36
(2)	369613	MQK-41/600/4 bracket	2	-
(3)	369665	MQW-S/2 connector	2	-
(4)	369623	MQN push button	8	-
(5)	2105718	HST3 M12x105 30/10 stud anchor	8	-
(6)	369685	MQZ-E41 plastic end cap	2	-
(7)	248210	MSG 1.75 M12/16D slider	4	-
(8)	216397	AM12x50 threaded bolt	8	-
(9)	20885	MP-MI 159 G pipe ring	8	-
(10)	369626	MQM-M10 wing nut	8	-
(11)	216454	M10x25 hexagon screw	8	-

Trapeze On Concrete -
 Expansion Zone Pipe Fastening $1 / 2$ " , $3 / 4$ "

Expansion zone solutions $3 / 4$ "

Trapeze On Concrete -
 Main Frame Options: Axial Bracing

Using MQ-3D elements and threaded rods

Using MQP-U hinge and threaded rods

Application description	Application	Product lines	Base material
Heating - trapeze frame		MQ System	Concrete
General comments		MQ3D System	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		MQP-U hinge	

Trapeze On Concrete -
 Main Frame Options: Axial Bracing

Heating Applications - Trapeze Frame

Type H-T5

- Limited to max. 4 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 6 m
- Insulation 40 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Trapeze On Concrete -
 Main Frame Options: Lateral Bracing

Using MQ - 3D elements and threaded rods

Lateral bracing using 3D elements	
Set of 2 braces	
2x MQ3D-B 3D base	369694
2x MQN push button	369623
4x MQ3D-A brace connector	369697
2x AM10 threaded rod	
AM10x1000 t. rod	339795
AM10x2000 t. rod	339796
AM10x3000 t. rod	216418
8x M10 hex. nut	216466
2x Anchor	
HUS3-H 8x55/-/- screw anchor	2079794
HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847

Using MQP-U hinge and threaded rods

Lateral bracing using MQP-U hinge	
Set of 2 braces	
4x MQP-U M12 hinge	284248
2x MQM-M12	369627
2x M12x25 hex. screw	216458
2x AM12 threaded rod	
AM12x1000 t. rod	339797
AM12x2000 t. rod	216420
AM12x3000 t. rod	216421
$8 \times$ M12 hex. nut	216467
2x Anchor	2079912
HUS3-H 10x70/-/- screw anchor	
or	2105718
HST3 M12x105 30/10 stud anchor	2107848
HST2 M12x105/10 stud anchor	

Application description	Application	Product lines	Base material
Heating - trapeze frame		MQ System	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Trapeze On Concrete -
 Main Frame Options: Lateral Bracing

Using MQ-3D elements and threaded rods

Using MQ - 3D elements and channels

Axial and lateral bracing using 3D elements	
Set of axial bracing (4 braces)	
2x MQ3D-B 3D base	369694
2x MQN push button	369623
8x MQ3D-A brace connector	369697
4x AM10 threaded rod	
AM10x1000 t. rodv	339795
AM10x2000 t. rod	339796
AM10x3000 t. rod	216418
16x M10 hex. nut	216466
4x anchor	
HUS3-H 8x55/-/- screw anchor	2079794
or	
HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847
Set of lateral bracing (2 braces)	
2x MQ3D-B 3D base in case it is	
independent	369694
2x MQN push button	369623
4x MQ3D-A brace connector	369697
2x AM10 threaded rod	
AM10x1000 t. rod	339795
AM10x2000 t. rod	339796
AM10x3000 t. rod	216418
8x M10 hex. nut	216466
2x anchor	
HUS3-H 8x55/-/- screw anchor	2079794
or	
HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847

Axial and lateral bracing using 3D elements	
Set of axial bracing (2 braces)	
2x MQ3D-B 3D base	369694
6x MQN push button	369623
2x MQ3D-W45channel brace connector 369696	
2x MQ-21D 3m...m channel	369601
2x MQP-45 base connector	369649
2x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848
Set of lateral bracing (1 brace)	
1x MQ3D-B 3D base	369694
3x MQN push button	369623
1x MQ3D-W45channel brace connector 369696	
1x MQ-21D 3m...m channel	369601
1x MQP-45 base connector	369649
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Application description
Heating - trapeze frame
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

[^0]
Oentilever Arm On Ooncrete - Options

Single profile brackets - galvanized portfolio
(1)

21 mm format brackets	
(1) MQK-21/300	$\mathbf{3 6 9 6 0 7}$
(2) MQK-21/450	$\mathbf{3 6 9 6 0 8}$

(1)
(6)

41 mm format brackets	
(1) MQK-41/300	$\mathbf{3 6 9 6 0 9}$
(2) MQK-41/450	$\mathbf{3 6 9 6 1 0}$
(3) MQK-41/600	369611
(4) MQK-41/1000	$\mathbf{3 6 9 6 1 2}$
(5) MQK-41/3/300	370595
(6) MQK-41/3/450	370596
(7) MQK-41/3/600	370597
(8) MQK-41/600/4	$\mathbf{3 6 9 6 1 3}$
(9) MQK-41/1000/4	$\mathbf{3 6 9 6 1 4}$

Application description
Heating - cantilever arm
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Cantilever Arm On Concrete - Options

Double - B2B profile brackets - galvanized

Cantilever Arm On Concrete - Vertical Bottom Bracing

Cantilever Arm On Concrete Vertical Upper Bracing With Threaded Rods

Using MQP-U hinge connectors and M12 threaded rods

Vertical upper bracing using MQP-U M12 hinge	
Upper brace connection	
1x MQP-U M12 hinge	284248
1x Anchor	
HUS3-H 10x90 35/15/5 screw anchor	2079914
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848
2x M12 hex. nut	216467
Brace	
1x M12 threaded rod	
AM12x1000 t. rod	339797
AM12x2000 t. rod	216420
AM12x3000 t. rod	216421
Bottom brace connection	284248
1x MQP-U M12 hinge	216458
1x M12x25 hexagon screw	216467
2x M12 hex. nut	369627
1x MQM-M12 wing nut	282852

Using MQ - 3D elements and M10 threaded rods

Vertical upper bracing using MQ3D elements	
Upper brace connection 1x MQ3D-A brace connector with removed screw	
2x M10 hex. nut	369697
1x Anchor	216466
HUS3-H 8x65 15/5/- screw anchor	2079795
or	
HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847
Brace	
1x AM10 threaded rod	
AM10x1000 t. rod	339795
AM10x2000 t. rod	339796
AM10x3000 t. rod	216418
Bottom brace connection	
1x MQ3D-A brace connector with	
removed screw	369697
2x M10 hex. nut	216466
1x M10x25 hex. Screw	216454
1x MQZ-L11 square washer	369679
1x MQM-M10 wing nut	369626

Application description
Heating - cantilever arm
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Cantilever Arm On Concrete -
 Side (Axial) Bracing With Pre-fab. Braces

Bracket with short pre-fab. brace

For double brackets min. arm 450 mm	
Cantilever arm	
1x MQK cantilever arm	
MQK-21D/450	369618
MQK-21D/600	369619
MQK-41D/1000	369620
Side brace	369622
1x MQK-SK pre-fab. brace	369623
1x MQN push button	
3x Anchor	2079914
HUS3-H 10x90 35/15/5 screw anchor	
or	2105718
HST3 M12x105 30/10 stud anchor	2107848
HST2 M12x105/10 stud anchor	

Bracket with long pre-fab. brace

For double brackets min. arm 600 mm	
Cantilever arm	
1x MQK cantilever arm	
MQK-21D/600	369619
MQK-41D/1000	
Side brace	369620
1x MQK-SL pre-fab. brace	369623
1x MQN push button	
3x Anchor	
HUS3-H 10x90 35/15/5 screw anchor	2079914
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Application description
Heating - cantilever arm
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Cantilever Arm On Concrete -
 Side (Axial) Bracing Using Channel

Double bracket with standard connectors and braced with channel

Bracket 41 mm format with MQ3D elements and braced with channel

Gantilever Arm On Concrete Vertical And Side Bracing (Pre-fab.)

Cantilever arm with vertical and side (axial) bracing using pre-fab. braces
For brackets with min. arm of 600 mm

Application description	Application	Product lines	Base material
Heating - cantilever arm		MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Anchors	

Cantilever Arm On Concrete - Slider Fastening

Use of slider is associated with axial loads, making side (axial) bracing necessary

Application description	Application	Product lines	Base material
Heating - cantilever arm	$4$$0$	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Sliders / rollers	

Heating Applications - Cantilever Arm

Type H-CA1

- Limited to max. $2 \times$ DN 65 (O.D. 76.1 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $2 \times$ DN 65 (O.D. 76.1 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369611	MQK-41/600 bracket	1	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(3)	369685	MQZ-E41 plastic end cap	1	-
(4)	386413	MP-HI 75-84 M8/M10 pipe ring	4	-
(5)	248209	MSG 1.75 M8/10D slider	2	-
(6)	369626	MQM-M10 wing nut	4	-
(7)	216454	M10x25 hexagonal screw	4	-
(8)	216384	AM8x80 threaded bolt	4	-

Application description
Heating - cantilever arm

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Heating Applications - Cantilever Arm

Type H-CA2

- Limited to max. $2 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $2 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369619	MQK-21 D/600 bracket	1	-
(2)	369622	MQK-SK pre-fab. brace short	1	-
(3)	369623	MQN push button	1	-
(4)	2105718	HST3 M12x105 30/10 stud anchor	3	-
(5)	370598	MQZ-E21 plastic end cap	2	-
(6)	335692	MPN-RC 3" B pipe ring	4	-
(7)	248209	MSG 1.75 M8/10D slider	2	-
(8)	369626	MQM-M10 wing nut	4	-
(9)	216453	M10x20 hexagonal screw	4	-
(10)	216392	AM10x80 threaded bolt	4	-

Application description

Heating - cantilever arm

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Heating Applications - Cantilever Arm

Type H-CA3

- Limited to max. 4 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Heavy Cantilever Arm On Concrete Slider Fastening On MQK-H Brackets

Sliders / rollers on MQK-H300 and MQK-H500

Application description	Application	Product lines	Base material
Heating - cantilever arm		MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Sliders / rollers	

Heating

Heavy Cantilever Arm On Ooncrete -
 Slider Fastening On MQK-H Brackets

Sliders / rollers on MQK-H750 and MQK-H900

Application description	Application	Product lines	Base material
Heating - cantilever arm	$4$$20$	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Heavy brackets	

Heavy Cantilever Arm On Concrete Side Bracing For MQK Heavy Brackets

Side (axial) bracing with channel for MQK-H300 and MQK-H550

Side (axial) bracing with channel for MQK-H750 and MQK-H900

Base material brace connection MQP-45	
1x MQP-45 channel base	$\mathbf{3 6 9 6 4 9}$
2x MQN push button	369623
1x Anchor	
HUS3-H 10x90 35/15/5 screw anchor	2079914
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Brace made of 41 mm format channel	
MQ-41 2 m	304559
MQ-41 3 m	369591
MQ-41 6 m	369592
MQ-41 3 m LL	2048100
MQ-41 6 mLL	2048101
MQ-41/3 3 m	369596
MQ-41/3 6 m	369597
MQ-41 U 6 m	369595
MQ-21D 3 m	369601
MQ-21D 6 m	369602

Cantilever arm brace connection	
1x MQP-45 channel base	369649
2x MQN push button	369623
1x M12x25 hexagon screw	216458
1x A13/24 washer	282852
1x M12 hex. nut	216467

Base material brace connection MQP-45	
1x MQP-45 channel base	369649
2x MQN push button	369623
1x Anchor	
HUS3-H 10x90 35/15/5 screw anchor	2079914
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

$|$| Brace made of 41 mm format channel | | |
| :--- | ---: | :---: |
| MQ-41 2 m | 304559 | |
| MQ-41 3 m | 369591 | |
| MQ-41 6 m | 369592 | |
| MQ-41 3 m LL | 2048100 | |
| MQ-41 6 m LL | 2048101 | |
| MQ-41/3 3 m | 369596 | |
| MQ-41/3 6 m | 369597 | |
| MQ-41 U 6 m | 369595 | |
| MQ-21D 3 m | 369601 | |
| MQ-21D 6 m | 369602 | |
| | | |
| Cantilever arm brace connection | | |
| 1x MQP-45 channel base | 369649 | |
| 2x MQN push button | 369623 | |
| 1x M12x25 hexagon screw | 216458 | |
| 1x A13/24 washer | 282852 | |
| 1x M12 hex. nut | 216467 | |

Application description
Heating - cantilever arm
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heavy Cantilever Arm On Concrete Side Bracing For MQK Heavy Brackets

Side (axial) bracing with threaded rod for MQK-H300, 550, 750, 900

Cantilever Arm On Concrete Fastening Pipe Shoes On MQK Bracket

Fastening pipe shoe on MQK bracket	
1x Pipe shoe	
MI-PS2/1 25-85	304852
MI-PS2/1 25-140	286965
MI-PS2/1 40-85	304853
MI-PS2/1 40-140	286966
MI-PS2/1 50-85	304854
MI-PS2/1 50-140	286967
MI-PS2/1 65-85	304855
MI-PS2/1 65-140	286968
MI-PS2/1 80-85	304856
MI-PS2/1 80-140	286969
MI-PS2/1 100-85	304857
MI-PS2/1 100-140	286970
MI-PS2/1 125-85	304858
MI-PS2/1 125-140	286971
MI-PS2/1 150-85	304859
MI-PS2/1 150-140	286972
MI-PS2/1 200-107	304860
MI-PS2/1 200-142	286973
1x MQV-PS connector (pair)	304886
2x MQM-M10 wing nut	369626
2x A10,5/20 washer	282851
2x M10x25 hexagon screw	216454

Application description	Application	Product lines	Base material
Heating - cantilever arm	$4$$90$	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Pipe shoes	

Cantilever Arm On Concrete Mounting U-bolts

Heavy bracket	
Bracket	
1x MQK-H/750 bracket	2048098
or	
1x MQK-H/900 bracket	2048099
Anchors	
3x HST3 M16x135 35/15 stud anchor	2105858
3x HST2 M16x140/25 stud anchor	2108160

Application description	Application	Product lines	Base material
Heating - cantilever arm		MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		U-bolts	

Natural Compensation Zone Trapeze - Options

Natural Compensation Zone Trapeze Node Stiffening Options 1

Stiffening by using MQW-S2

Connector	
1x MQW-S2 connector	369665
4x MQN push button	369623

Stiffening by using MQW-S1

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze	¢ 5	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Natural Compensation Zone Trapeze -
 Node Stiffening Options 2

Open section of vertical profiles facing inside of the trapeze

Connector	
2x MQW-S2 connector	$\mathbf{3 6 9 6 6 5}$
$8 x$ MQN push button	369623

Open section of vertical profiles facing pipe axis

Connector	
2x MQW-8 connector	369659
8x MQN push button	369623

Connector	
2x MQW-4 connector	369658
4x MQN push button	369623

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze	द 5	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Natural Compensation Zone Trapeze Fastening Cross Slicling / Rolling Elements

Heating Applications - Natural Compensation Zone Trapeze

Type H-NCZT1

- Limited to max. 2 x DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $2 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369584	MQ-21 3 m channel	1	0.55
(2)	369608	MQK-21/450 bracket	2	-
(3)	369656	MQW-3 connector	2	-
(4)	369623	MQN push button	6	-
(5)	2105718	HST3 M12x105 30/10 stud anchor	4	-
(6)	370598	MQZ-E21 plastic end cap	2	-
(7)	386414	MP-HI 84-93 M8/M10 pipe ring	4	-
(8)	248205	MSG $1.0 \mathrm{M} / 10$ slider	2	-
(9)	337115	MSG-UK D1.75 cross slider	2	-
(10)	216454	M10x25 hexagon screw	4	-
(11)	369626	MQM-M10 wing nut	4	-
(12)	216390	AM10x40 threaded bolt	4	-

Application description
Heating - natural compensation zone trapeze
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Natural Compensation Zone Trapeze -
 Axial Bracing Options

Open section of vertical profiles facing pipe axis

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze	¢ 5	MQ system	Concrete
General comments - Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Anchors	

Heating Applications - Natural Compensation Zone Trapeze

Type H-NCZT2

- Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Natural Compensation Zone Trapeze Axial Bracing Options

Open section of vertical profiles opened towards inside / outside of the trapeze

Axial bracing base material hinge connector	
1x MQP-G pivot connector	369654
2x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/-screw anchor	2079912
or	
HST3 M12×105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Axial bracing - base material connector	
Upper brace connection alternative	
1x MQP-45 connector	369649
2x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Long pre-fab. brace
Pre-fab brace
1x MQK-SL pre-fab. brace
1x MQN push button
1x Anchor
HUS3-H 10x70/-/- screw anchor
or
HST3 M12x105 30/10 stud anchor
HST2 M12x105/10 stud anchor

Axial bracing - brace connector
Upper brace connection alternative

1x MQW-3/135 connector	369663
2x MQN push button	369623

Short pre-fab. brace	
Pre-fab brace	
1x MQK-SK pre-fab. brace	369622
1x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw ancho	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Application description
Heating - natural compensation zone trapeze
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Natural Compensation Zone Trapeze -
 Axial Bracing Options Using Threaded Rods

For any orientation of the vertical channel

Axial bracing using 3D elements	
Set of axial braces (2 braces)	
1x MQ3D-B 3D base	369694
1x MQN push button	369623
4x MQ3D-A brace connector	369697
2x AM10 threaded rod	
AM10x1000 t. rod	339795
AM10x2000 t. rod	339796
AM10x3000 t. rod	216418
8x M10 hex. nut	216466
2x Anchor	2079794
HUS3-H 8x55/-/- screw anchor	
or	2105712
HST3 M10x90 30/10 stud anchor	2107847

For orientation of the vertical double (B2B) channel with open side facing pipe axis

Axial bracing using MQP-U hinge	
Set of axial braces (2 braces)	
4x MQP-U M12 hinge	284248
2x MQM-M12	369627
2x M12x22 hex. screw	216457
2x AM12 threaded rod	
AM12x1000 t. rod	339797
AM12x2000 t. rod	216420
AM12x3000 t. rod	216421
8x M12 hex. nut	216467
2x Anchor	2079912
HUS3-H 10x70/-/- screw anchor	
or	2105718
HST3 M12x105 30/10 stud anchor	2107848
HST2 M12x105/10 stud anchor	

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze		MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Natural Compensation Zone Trapeze

Type H-NCZT3

- Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 88.9 mm) water-filled steel pipe

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	339795	AM10x1000 threaded rod	4	0.75
(2)	369591	MQ-41 3 m channel	1	1.06
(3)	369612	MQK-41/1000 bracket	2	-
(4)	369694	MQ3D-B 3D base	2	-
(5)	369697	MQ3D-A brace connector	8	-
(6)	369623	MQN push button	6	-
(7)	2105718	HST3 M12x105 30/10 stud anchor	4	-
(8)	369685	MQZ-E41 plastic end cap	2	-
(9)	386414	MP-HI 84-93 M8/M10 pipe ring	8	-
(10)	248205	MSG $1.0 \mathrm{M} 8 / 10$ slider	4	-
(11)	337115	MSG-UK D1.75 cross slider	4	-
(12)	216454	M10x25 galvanized hex screw	8	-
(13)	369626	MQM-M10 wing nut	8	-
(14)	216390	AM10x40 threaded bolt	8	-
(15)	2105712	HST3 M10x90 30/10 anchor	4	-
(16)	216466	M10 hexagon nut	16	-

Application description

Heating - natural compensation zone trapeze
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Natural Compensation Zone Trapeze -
 Lateral Bracing Options Using Ohannel

Orientation of the vertical channel: open side to the outside of the trapeze

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze		MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Natural Compensation Zone
 Trapeze

 Additional loading capacity limits

 Additional loading capacity limits}
Type H-NCZT4

- Limited to max. $4 \times$ DN 100 (O.D. 114.3 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 100 (O.D. 114.3 mm) water-filled steel pipe

Bill of materials
Reference
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

Application description

Heating - natural compensation zone trapeze
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
के 5
Base material
Product line
Capacity limit
Concrete
MQ system, sliders
$4 \times$ DN 100 concrete

Natural Compensation zone Trapeze Lateral Bracing Options Using Channel

Open section of vertical profiles facing pipe axis

Application description	Application	Product lines	Base material
Heating - natural compensation zone trapeze		MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

All the clamps allow different positions of the
channel in the clamp or even using back-to-back
channels of the same format in the clamp.

Application description	Application	Product lines	Base material
Heating - riser guides	6	MQ system	Concrete
General comments	\%	Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Riser cuides - Wall Rail On Concrete

Using all sizes of single channel

Using all sizes of channel

369672
MQ-41

Clamp MQB to channel as to concrete	
for M8	
1x MQB clamp	Relevant size
1x MQN pushbutton	369623
2x MQZ-L9 sq. washer	369678
2x HST3 M8x75 -/10 stud anchor	2105888
HST2 M8x75/10 stud anchor	2108161
for M10	Relevant size
1x MQB clamp	369623
1x MQN pushbutton	369679
2x MQZ-L11 sq. washer	
2x HST3 M10x90 30/10 stud anchor	2105712
HST2 M10x90/10 stud anchor	2107847
for M12	Relevant size
1x MQB clamp	369623
1x MQN pushbutton	369680
2x MQZ-L13 sq. washer	2x HST3 M12x105 30/10 stud anchor
HST2 M12x105/10 stud anchor	2105718
for M16	
1x MQB clamp	Relevant size
1x MQN pushbutton	369623
MQZ-L17 sq. washer	369681
2x HST3 M16x135 $35 / 15$ stud anchor	2105858

Riser Guides - Wall Reil On Concrete

Fixing slider / roller on wall rail

Double roller in bracket with M16 connection	
1x MRG-D6 M12/M16 roller	334131
2x MQM-M12 wing nut	369627
2x M12x25 hexagon screw	216458
2x M16 threaded bolts	
AM16x60	212634
AM16x80	216403
AM16x100	212635
AM16x150	212636
M16 pipe rings MP-MI..C Sizes 4" $-\mathbf{2 4 4 . 5} \mathbf{~ m m}$ MP-MXI..M16 Sizes 4" -508 mm	

Double slider in channel with M10 connections	
1x MSG 1.75 M8/M10 D slider	248209
2x MQM-M10 wing nut	369626
2x M10x25 hexagon screw	216454
2x M10 threaded bolts	
AM10x40	216390
AM10x60	216391
AM10x80	216392
AM10x100	216393
AM10x120	216394
AM10x150	216395
AM10x180	216396

Application description	Application	Product lines	Base material
Heating - riser guides	6	MQ system	Concrete
General comments		Sliders/rollers	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Cantilever Arm

Type H-RG1

- Limited to max. 4 x DN 80 (O.D. 89.1 mm) water-filled steel pipe
- Spacing - support distance 3 m
- Insulation 20 mm elastomeric caoutchouc

Additional loading capacity limits

The loading capacity limit is set by many different parameters for this complex case. Exceeding any (even only one) of the parameters shown in red would result in exceeding the limitation factors for this particular case.
This would make it necessary to carry out the complete static calculations and may lead to selection of different products and dimensions.

Limited to max. $4 \times$ DN 80 (O.D. 89.1 mm) water-filled steel pipe

Bill of materials

| Reference | Item no. | Description | Piece | Length (m) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{3 6 9 5 8 4}$ | MQ-21 3 m channel | 1 | 0.90 |
| (2) | $\mathbf{3 6 9 6 8 0}$ | MQZ-L13 square washer | 2 | - |
| (3) | $\mathbf{2 1 0 5 8 5 1}$ | HST3 M12x145 70/50 anchor | 2 | - |
| (4) | $\mathbf{2 0 8 6 6}$ | MI-MI 3" G pipe ring | 8 | - |
| (5) | $\mathbf{2 4 8 2 1 0}$ | MSG 1.75 M12/16D slider | 4 | - |
| (6) | $\mathbf{3 6 9 6 2 6}$ | MQM-M10 wing nut | 8 | - |
| (7) | $\mathbf{2 1 6 4 5 3}$ | M10x20 hexagon screw | 8 | - |
| (8) | $\mathbf{2 1 6 3 9 7}$ | AM12x50 threaded bolt | $\mathbf{8}$ | - |

Application description
Heating - riser guides
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Riser Guides - Off-set Frame

Using pre-fab. or assembled cantilever arms for off-set frame

Connection to concrete - channel base	
1x MQP 21-72 channel base	369651
2x MQN push button	369623
2x Anchor	
HUS3-H 10x70/-/-screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

41 format channels	
MQ-41 2 m	304559
MQ-41 3 m	369591
MQ-41 6 m	369592
MQ-413 m LL	2048100
MQ-41 6 mLL	2048101
MQ-41/3 3 m	369596
MQ-41/3 6 m	369597
MQ-41 U 6 m	369595
MQ-21D 3 m	369601
MQ-21D 6 m	369602

Application description	Application	Product lines	Base material
Heating - riser guides	6	MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Riser Guides - Off-set Frame: Vertical Bracing

Using pre-fab. or assembled cantilever arms for off-set frame

Vertical upper bracing using MQP-U hinge	
Set of axial bracing (1 brace)	
2x MQP-U M12 hinge	284248
1x MQM-M12 wing nut	369627
1x M12x25 hex. screw	216458
1x AM12 threaded rod	
AM12x1000 t. rod	339797
AM12x2000 t. rod	216420
AM12x3000 t. rod	216421
4x M12 hex. nut	216467
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Vertical bottom bracing - pre-fab. brace	
Pre-fab brace	
1x MQK-SL pre-fab. brace	369621
MQK-SK pre-fab. brace	369622
1x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw anchor or	2079912
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Vertical bottom bracing - base material connector	
Upper brace connection alternative	
1x MQP-45 connector	369649
2x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Riser Guides - Shaft Sub-structure

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the

Plant Room Equipment Support - Splitter Frame Options

Vertical bracing - pre-fab. brace	
Pre-fab brace	
1x MQK-SL pre-fab. brace	369621
MQK-SK pre-fab. brace	369622
1x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Application description	Application	Product lines	Base material
Heating - plant room equipment support: splitter frame		MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Plant Room Equipment Support - Splitter Frame Options

Application description	Application	Product lines	Base material
Heating - plant room equipment support: splitter frame		MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Plant Room =quipment Support - Splitter Frame Options

Multi splitter framing example

Plant Room =quipment Support - Splitter Frame Options

Multi splitter framing example

| Application description | Application | Product lines | Base material | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Heating - plant room equipment support: splitter frame | | 7 | MQ system | Concrete |
| General comments | | | | |

Heating Applications - Plant Room Equipment Support: Splitter Frame

Type H-PR-SF5

- This example for splitter DN 350 (O.D. 372 mm)
- Outgoing pipes $6 \times$ DN 80 (O.D. 88.9 mm)
- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369652	MQP 82 channel base	6	-
(2)	369623	MQN push button	54	-
(3)	2105718	HST3 M12x105 30/10 stud anchor	18	-
(4)	369603	MQ-41D 3 m channel	3	Depends on span
(5)	369611	MQK-41/600 bracket	3	-
(6)	369664	MQW-S1 connector	3	-
(7)	369623	MQM-M12 wing nut	6	-
(8)	216458	M12x25 screw	6	-
(9)	369619	MQK-21D/600 bracket	3	-
(10)	369591	MQ-41 3 m channel	2	Depends on width of the frame
(11)	369668	MQB-41 cross connector	6	-
(12)	369685	MQZ-E41 plastic end cap	4	-
(13)	369632	MQA-M16 B saddle nut	6	-
(14)	216422	AM16x1000 threaded rod	6	Depends on size
(15)	216468	M16 hexagon nut	18 (12)	-
(16)	372245	MP-MXI 368 M16 pipe ring	3	-
(17)	369630	MQA-M10 saddle nut	12	-
(18)	216390	AM10x40 threaded bolt	12	-
(19)	216466	M10 hexagon nut	12	-
(2)	335692	MPN-RC 3" B pipe ring	12	-

Application description
Heating - plant room equipment support: splitter frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application
Base material Concrete
Product line MQ System
Capacity limit Individual

Plant Room Equipment Support Switch Box Frame Options

Switch box frame, floor to ceiling

41 format channels	
MQ-41 2 m	304559
MQ-41 $\mathbf{~ m ~ m}$	369591
MQ-41 6 m	369592
MQ-41 $\mathbf{~ m ~ L L}$	2048100
MQ-41 6 m LL	2048101
MQ-41/3 3 m	369596
MQ-41/3 $\mathbf{~ m}$	369597
MQ-41 U 6 m	369595
MQ-21D 3 m	369601
MQ-21D 6 m	369602

Cross connector for 1 fixing point	
1x MQB-41 cross connector	369668
3x MQN push button	369623

For cases where there
is enough space

Connection to concrete - channel base	
1x MQP 21-72 channel base	$\mathbf{3 6 9 6 5 1}$
2x MQN push button	369623

Connection to concrete - channel base	
1x MQV -2/2 D-14 channel base	$\mathbf{3 6 9 6 3 9}$
2x MQN push button	$\mathbf{3 6 9 6 2 3}$

Application description
Heating - plant room equipment support: switch box frame
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the applicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Page 185 Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Heating Applications - Plant Room Equipment Support: Switch Box Frame

Type H-PR-SB1

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369652	MQP-82 channel base	4	-
(2)	369623	MQN push button	28	-
(3)	369603	MQ-41D 3 m channel	2	Depends on span
(4)	369591	MQ-41 3 m channel	2	Depends on the with of the box
(5)	369668	MQB-41 cross connector	4	-
(6)	369627	A13/24 washer	4	-
(7)	282852	M10x20 hexagon screw	4	-
(8)	216458	M12x25 hex. screw	4	-
(9)	2105718	HST3 M12x105 30/10 anchor	8	-

Application description

Heating - plant room equipment support: switch box frame

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Concrete
Product line
MQ System
Capacity limit Individual

Plant Room Equipment Support -
 Switch Box Frame Options

Switch box frame, floor to ceiling
Space-saving solution
Relevant anchors for channel bases 2-4x HUS3-H 10x70/-/- screw anchor 2079912 or
2-4x HST3 M12x105 30/10 stud anchor2105718
HST2 M12x105/10 stud anchor 2107848

Connection to concrete - channel base		
1x MQP $21-72$ channel base	369651	
2x MQN push button	369623	

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the applicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Page 187 Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Heating Applications - Plant Room Equipment Support: Switch Box Frame

Type H-PR-SB2

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369652	MQP 21-72 channel base	4	-
(2)	369623	MQN push button	16	-
(3)	369603	MQ-41D 3 m channel	2	Depends on span
(4)	369603	MQ-41D 3 m channel	2	Depends on the with of the box
(5)	369658	MQW-4 connector	4	-
(6)	369627	MQM-M12 wing nut	4	-
(7)	282852	A13/24 washer	4	-
(8)	216458	M12x25 hex. screw	4	-
(9)	2105718	HST3 M12x105 30/10 anchor	8	-

Application description
Heating - plant room equipment support: switch box frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System

Capacity limit Individual

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with th

Plant Room Equipment Support Switch Box Frame Options

Application description	Application	Product lines	Base material
Heating - plant room equipment support: switch box frame	8	MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Plant Room Equipment Support: Switch Box Frame

Type H-PR-SB3

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369652	MQP-82 channel base	2	-
(2)	369623	MQN push button	16	-
(3)	369603	MQ-41D 3 m channel	2	Depends on span
(4)	369603	MQ-41D 3 m channel	2	Depends on the with of the box
(5)	369658	MQW-4 connector	4	-
(6)	369627	MQM-M12 wing nut	4	-
(7)	282852	A13/24 washer	4	-
(8)	216458	M12x25 hex. screw	4	-
(9)	369685	MQZ-E41 plastic end cap	4	-
(10)	2105718	HST3 M12x105 30/10 anchor	4	-

Application description
Heating - plant room equipment support: switch box frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the oplicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Plant Room =quipment Support Switch Box Frame: Stiffening Options

Switch box frame, floor-mounted

Heating Applications - Plant Room Equipment Support: Switch Box Frame

Type H-PR-SB4

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369652	MQP-82 channel base	2	-
(2)	369623	MQN push button	28	-
(3)	369603	MQ-41D 3m channel	2	Depends on height
(4)	369603	MQ-41D 3m channel	2	Depends on the with of the box
(5)	369658	MQW-4 connector	4	-
(6)	369627	MQM-M12 wing nut	4	-
(7)	282852	A13/24 washer	4	-
(8)	216458	M12x25 hex. screw	4	-
(9)	369685	MQZ-E41 plastic end cap	4	-
(10)	369660	MQW-8/45 connector	2	-
(11)	369591	MQ-41 3m channel	2	Depends on the length of the brace
(12)	369649	MQP-45 channel base	2	-
(13)	2105718	HST3 M12x105 30/10 anchor	6	-

Application description

Heating - plant room equipment support: switch box frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System

Capacity limit Individual

Plant Room Equipment Support - Switch Box Wall Mounted

Switch box on wall, with lateral adjustment on concealed channel

Switch box on wall, with lateral adjustment on projecting channel

Switch box on wall rail - concealed channel	
2 x Channel - 21 mm format channels	
MQ-21 2 m	304558
MQ-213 m	369584
MQ-21 6 m	369585
2x Channel -41 mm format channels	
MQ-41 2 m	304559
MQ-41 3 m	369591
MQ-41 6 m	369592
MQ-41 3 mLL	2048100
MQ-41 6 mLL	2048101
MQ-41/3 3 m	369596
MQ-41/3 6 m	369597
Plastic end cap	
4x MQZ-E21 end cap for 21 channel	370598
4x MQZ-E41 end cap for 41 channel	369685
Anchor	
4x HUS3-H 10x70/-/- screw anchor	2079912
Switch box fastening	
M8	
4x M8x20 hex. screw	216447
4x A8,4/16 washer	282850
4x MQM-M8 wing nut	369698
M10	
4x M10x20 hex. screw	216453
4x A10,5/20 washer	282851
4x MQM-M10 wing nut	369626
M12	
4x M12x20 hex. screw	216457
4x A13/24 washer	282852
4x MQM-M12 wing nut	369627

Switch box on wall rail - projecting channel	
$2 \times$ Channel - 21 mm format channels	
MQ-21 2 m	304558
MQ-21 3 m	369584
MQ-21 6 m	369585
$2 \mathrm{Channel} \mathrm{-41} \mathrm{~mm} \mathrm{format} \mathrm{channels}$	
MQ-41 2 m	304559
MQ-41 3 m	369591
MQ-41 6 m	369592
MQ-413 m LL	2048100
MQ-41 6 mLL	2048101
MQ-41/3 3 m	369596
MQ-41/3 6 m	369597
Plastic end cap	
4x MQZ-E21 end cap for 21 channel	370598
4x MQZ-E41 end cap for 41 channel	369685
Connection to the wall	
4x MQZ-L13 square washer	369680
4x HST3 M12x145 70/50 stud anchor	2105851
Switch box fastening	
See above	

| Application description | Application | Product lines | Base material | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Heating - plant room equipment support: switch box wall mounted | | $\mathbf{8}$ | MQ system | Concrete |
| General comments | | | | |

Heating Applications - Plant Room Equipment Support: Switch Box Wall Mounted

Type H-PR-SB5

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369591	MQ-41 3 m channel	2	Depends on the width of the box
(2)	370598	MQZ-E41 plastic end cap	4	-
(3)	2079912	HUS3-H 10x70/-/-screw anchor	4	-
(4)	369627	MQM-M12 wing nut	4	-
(5)	282852	A13/24 washer	4	-
(6)	216458	M12x25 hex. screw	4	-

Application description
Heating - plant room equipment support: switch box frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the pplicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Plant Room Framing - Simple 3D Frame: Options

Simple 3D frame, e.g. for small boiler or heater

Application description	Application	Product lines	Base material
Heating - plant room framing: 3D frame	9	MQ system	Concrete
General comments		Anchors	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application	$\$$		

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D1

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	4	-
(2)	369623	MQN push button	24	-
(3)	2105718	HST3 M12x105 30/10 stud anchor	8	-
(4)	369591	MQ-41 3 m channel	4	Depends on the height of the box
(5)	369685	MQZ-E41 end cap	4	-
(6)	369601	MQ-21D 3 m channel	2	Depends on width of the frame
(7)	369601	MQ-21D 3 m channel	2	Depends on depth of the frame
(8)	369641	MQV-3/3 D 3D connector	4	-

Application description
Heating - plant room equipment support: 3D frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with th pplicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Plant Room Framing - Simple 3D Frame: Node Options

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D2

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369613	MQK-41/600/4 bracket	4	-
(2)	369623	MQN push button	16	-
(3)	2105718	HST3 M12x105 30/10 stud anchor	16	-
(4)	369685	MQZ-E41 end cap	4	-
(5)	369601	MQ-21D 3 m channel	2	Depends on width of the frame
(6)	369601	MQ-21D 3 m channel	2	Depends on depth of the frame
(7)	369641	MQV-3/3 D 3D connector	4	-

Application description
Heating - plant room equipment support: 3D frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Plant Room Framing - Simple 3D Frame: Space Bracing Options

Space bracing with MQ-3D elements using threaded rods

Application description
Heating - plant room framing: 3D frame
General comments

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D3

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Prerequisite for space bracing shown: The equipment mounted on the 3D frame ensures rigidity of the upper horizontal plane.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	4	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	8	-
(3)	369623	MQN push button	31	
(4)	369591	MQ-41 3 m channel	4	Depends on height of the frame
(5)	369685	MQZ-E41 end cap	4	-
(6)	369641	MQV-3/3 D 3D connector	4	-
(7)	369601	MQ-21D 3 m channel	2	Depends on width of the frame
(8)	369601	MQ-21D 3 m channel	2	Depends on the depth of the frame
(9)	369694	MQ3D-B 3D base	7	-
(10)	369697	MQ3D-A brace connector	8	
(11)	339795	AM10x1000 threaded rod	4	Depends on the size of the frame
(12)	216466	M10 hex. nut	16	-

Application description
Heating - plant room equipment support: 3D frame

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Plant Room Framing - Simple 3D Frame: Space Bracing Options

Space bracing using pre-fab. braces

Space bracing set for one corner	
Set of space braces (2 braces)	
1x MQK-SK pre-fab. brace	$\mathbf{3 6 9 6 2 2}$
1x MQK-SL pre-fab. brace	369621
2x MQN push buttonv369623	
2x M12x22 hex. screw	216457
2x MQM-M12 wing nut	369627

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D4

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Prerequisite for space bracing shown: The equipment mounted on the 3D frame ensures rigidity of the upper horizontal plane.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	4	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	8	-
(3)	369623	MQN push button	28	
(4)	369591	MQ-41 3 m channel	4	Depends on height of the frame
(5)	369685	MQZ-E41 end cap	4	-
(6)	369641	MQV-3/3 D 3D connector	4	-
(7)	369601	MQ-21D 3 m channel	2	Depends on width of the frame
(8)	369601	MQ-21D 3 m channel	2	Depends on the depth of the frame
(9)	369622	MQK-SK pre-fab. brace short	2	-
(10)	369621	MQK-SL pre-fab. brace long	2	-
(11)	369627	MQM-M12 wing nut	4	-
(12)	216457	M12x22 hex. screw	4	-

| Application description | | Application | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Heating - plant room equipment support: 3D frame | | 9 | Base material | Concrete |
| General comments | | | | |

Plant Room Framing - Simple 3D Frame: Space Bracing Options

Space bracing using MQ3D elements and channels

Space bracing set for one corner	
Set of axial braces (2 braces)	
3x MQ3D-B 3D base	369694
7x MQN push button	369623
4x MQ3D-W45 channel brace	
connector	369696
Channels format 41 mm which could be used for brace	
MQ-41 2 m	304559
MQ-41 3 m	369591
MQ-41 6 m	369592
MQ-413 m LL	2048100
MQ-41 6 mLL	2048101
MQ-41/3 3 m	369596
MQ-41/3 6 mv	369597
MQ-41 U 6 m	369595
MQ-21D 3 m	369601
MQ-21D 6 m	369602

Application description	Application	Product lines	Base material			
Heating - plant room framing: 3D frame		9	MQ system	Concrete		
General comments						- Application subject to thermal expansion impact, no seismic, no fatigue,
:---						
no high/low temperature impact						
- Loading and load impact must always be compared with 3D capacity						
limits for every single part of the application						

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D5

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Prerequisite for space bracing shown: The equipment mounted on the 3D frame ensures rigidity of the upper horizontal

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	4	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	8	-
(3)	369623	MQN push button	28	-
(4)	369591	MQ-41 3 m channel	4	Depends on height of the frame
(5)	369685	MQZ-E41 end cap	4	-
(6)	369641	MQV-3/3 D 3D connector	4	-
(7)	369601	MQ-21D 3 m channel	2	Depends on width of the frame
(8)	369601	MQ-21D 3 m channel	2	Depends on the depth of the frame
(9)	369694	MQ3D-B 3D base	6	-
(10)	369696	MQ3D-W45 channel brace	8	-
(11)	369591	MQ-41 3 m channel	4	Depends on size of the frame

Application description
Heating - plant room equipment support: 3D frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Plant Room Framing - Simple 3D Heavy-load MI System Frame: Options

3D frame made from MI System parts

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D6

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	304827	MIC-C90-D connector	4	-
(2)	2105876	HST3-R M16x135 35/15 stud anchor	16	-
(3)	304798	MI-90 3 m girder	4	Depends on height of the frame
(4)	304803	MIC-90-U connector	8	-
(5)	304798	MI-90 3 m girder	2	Depends on width of the frame
(6)	304798	MI-90 3 m girder	2	Depends on depth of the frame
(7)	432077	MIA-EC-90 plastic end cap	4	-

Application description
Heating - plant room equipment support: 3D frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

9
Base material Concrete
Product line MQ System
Capacity limit Individual

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with th pplicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

Plant Room Framing - Multi-sectional 3D Frame: Options

Application description	Application	Product lines	Base material
Heating - plant room framing: 3D frame	9	MQ system	Concrete
General comments			
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application	4		

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D7

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel baser	6	-
(2)	369623	MQN push button	38	-
(3)	2105718	HST3 M12x105 30/10 stud anchor	12	-
(4)	369591	MQ-41 3 m channel	6	Depends on the height of the box
(5)	369685	MQZ-E41 end cap	6	-
(6)	369591	MQ-41 3 m channel	4	Depends on width of the frame
(7)	369591	MQ-41 3 m channel	3	Depends on depth of the frame
(8)	369641	MQV-3/3 D 3D connector	4	-
(9)	369642	MQV-4/3 D connector	2	

Application description
Heating - plant room equipment support: 3D frame

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Plant Room Framing - Simple 3D Frame:
 Intermediate Node Options

3D system substitution of connector for intermediate nodes	
1x MQ3D-B	$\mathbf{3 6 9 6 9 4}$
3x MQ3D-W90	$\mathbf{3 6 9 6 9 5}$
4x MQN push button	$\mathbf{3 6 9 6 2 3}$
Upper frame channels can be rotated	
360° (assembly in 4 positions possible).	

Application description
Heating - plant room framing: 3D frame
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D8

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	6	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	12	-
(3)	369623	MQN push button	32	-
(4)	369591	MQ-41 3 m channel	6	Depends on height of the frame
(5)	369685	MQZ-E41 end cap	6	-
(6)	369694	MQ3D-B 3D base	6	-
(7)	369695	MQ3D-W90 connector	14	-
(8)	369591	MQ-41 3 m channel	4	Depends on the width of the frame
(9)	369591	MQ-41 3 m channel	3	Depends on the depth of the frame

Application description	Application		
Heating - plant room equipment support: 3D frame	9	Base material	Concrete
General comments		Product line	MQ System
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Capacity limit	Individual

Plant Room Framing - Simple 3D Frame: Corner Node Options

3D frame made from MQ System parts

3D System substitution of connector for corner nodes	
1x MQ3D-B	$\mathbf{3 6 9 6 9 4}$
2x MQ3D-W90	$\mathbf{3 6 9 6 9 5}$
3x MQN push button	$\mathbf{3 6 9 6 2 3}$
Upper frame channels can be rotated 360°	
(assembly in 4 positions possible).	

[^1]For various sizes of the channels
e.g. upper channel
made of MQ-72

e.g. upper channel and vertical upright made of MQ-72

Application description
Heating - plant room framing: 3D frame
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D9

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials				
Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	6	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	12	-
(3)	369623	MQN push button	32	-
(4)	369591	MQ-41 3 m channel	6	Depends on height of the frame
(5)	369685	MQZ-E41 end cap	6	-
(6)	369694	MQ3D-B 3D base	6	-
(7)	369695	MQ3D-W90 connector	14	-
(8)	369591	MQ-41 3 m channel	4	Depends on the width of the frame
(9)	369591	MQ-41 3 m channel	3	Depends on the depth of the frame

Application description	Application		
Heating - plant room equipment support: 3D frame	9	Base material	Concrete
General comments		Product line	MQ System
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application	$\$$	Capacity limit	Individual

Plant Room Framing - Multi-sectional 3D Frame: Corner Node Options

Application description	Application	Product lines	Base material
Heating - plant room framing: 3D frame	9	MQ system	Concrete
General comments			
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - Plant Room Equipment Support: 3D Frame

Type H-PR-3D10

- No particular loading capacity limits for this case since every case must be modeled, calculated and verified individually

Additional capacity limits

Every case must be modeled, calculated and verified individually.

Strength, rigidity and convenience are more important than finding the most cost-efficient solution when installing plant room equipment.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369651	MQP 21-72 channel base	6	-
(2)	369623	MQN push button	64	-
(3)	2105718	HST3 M12x105 30/10 stud anchor	12	-
(4)	369591	MQ-41 3 m channel	6	Depends on the height of the box
(5)	369685	MQZ-E41 end cap	6	-
(6)	369591	MQ-41 3 m channel	8	Depends on width of the frame
(7)	369591	MQ-41 3 m channel	6	Depends on depth of the frame
(8)	369641	MQV-3/3 D 3D connector	8	-
(9)	369642	MQV-4/3 D connector	4	

Application description
Heating - plant room equipment support: 3D frame
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MQ System
Capacity limit Individual

Axial Guides On Concrete - Options

For frames requiring no axial or lateral bracing

Application description	Application	Product lines	Base material
Heating - axial guides		MQ system	Concrete
General comments		Sliders / rollers	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Axial Guides On Concrete - Options

For cases where axial bracing is necessary

Axial bracing using long MQK brace	
1x MQK-SL pre-fab. brace	369621
1x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12×105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Axial bracing using short MQK brace	
1x MQK-SK pre-fab. brace	369622
1x MQN push button	369623
1x Anchor	
HUS3-H 10x70/-/-screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Axial Guides On Concrete - Lateral Bracing Options

For cases where lateral bracing is necessary

Axial Guides On Concrete -
 Corridor Wall-to-wall Options

For cases where lateral bracing is necessary

Vertical upright anchored to ceiling supporting two axial guides	
1x Cantilever arm	
MQK-21D/300	369617
MQK-21D/450	369618
MQK-21D/600	269619
MQK-41D/1000	
2x Anchor	2079912
HUS3-H 10x70/-/- screw anchor	
or	2105718
HST3 M12x105 30/10 stud anchor	2107848
HST2 M12x105/10 stud anchor	
	369638
Connector	369623

Set of axial guides - complete	
1x MSG 1.75 M8/M10 double slider	248209
1x MSG $1.0 \mathrm{M} 8 / \mathrm{M} 10$ single slider	248205
4x MQM-M10 wing nut	369626
4x M10x20 hexagon screw	216453
3x M10 threaded bolts	
AM10x40	216390
AM10x60	216391
AM10x80	216392
AM10x100	216393
AM10x120	216394
AM10x150	216395
AM10x180	216396
3 x Pipe rings	
MP-LHI Sizes	mm-2"
MP-HI Sizes	mm-6"
MPN-LI Sizes	mm-2"
MPN-RC Sizes	mm - 6"
MP-MI Sizes	mm-6"
MP-MXI S	2"-3"

MQP 21-72 Channel base	
1x MQP 21-72 channel base	369651
2x MQN push button	369623
2x Anchor	
HUS3-H 10x70/-/- screw anchor	2079912
or	
HST3 M12x105 30/10 stud anchor	2105718
HST2 M12x105/10 stud anchor	2107848

Application description
Heating - axial guides
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Fixed Point On Concrete - MFP-L Fixed Point
 Imperial Connection Options

MFP-L no sound insulation

MFP-L fixed point set with $1 / 2$ " connection	
1x MFP-L fixed point pipe ring	
MFP-L NW $151 / 2{ }^{1 / 2}$	310307
MFP-L NW $20112{ }^{1}$	310308
MFP-L NW $25112{ }^{1}$	310309
1x MFP-GP $1 / 2$ " base plate	310318
1x GR-GP $1 / 2$ " threaded pipe	56428
2x HST3 M12x105 30/10 stud anchor	2105718

MFP-L fixed point set with $3 / 4$ " connection	
1x MFP-L Fixed point pipe ring	
MFP-L NW 32 ³/4	310310
MFP-L NW $403 / 4$ "	310311
MFP-L NW $503 / 4{ }^{\text {" }}$	310312
MFP-L NW 68/72 3/4"	310313
MFP-L NW 65 ¹/4"	310314
MFP-L NW $803 / 4{ }^{\prime \prime}$	310315
MFP-L NW 4"3/4"	310316
MFP-L NW 125 3/4"	310317
1x MFP-GP $3 / 4$ " base plate	310319
1x GR-G $3 / 4$ " threaded pipe	56429
2x HST3 M12x105 30/10 stud anchor	2105718

Application description	Application	Product lines	Base material
Heating - MFP-L fixed point: imperial size connection boss	11	Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP-L Fixed Point With Imperial Connection

Type H-FP2

- Limited to 1x DN 125 (O.D. 139.1 mm) steel pipe
- Max. axial load 2 kN at an axial distance of 150 mm
- Max. vertical load 15.0 KN
- No insulation on the pipe at the fixed point

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	310319	MFP-GP $3 / 4$ " base plate	1	-
(3)	56429	GR-G 3/4" threaded pipe	1	Depends on distance
(4)	310317	MFP-L NW 125 3/4" fixed point pipe ring	1	-

Application description
Heating - MFP-L fixed point: imperial connection boss
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line

Max. 2 kN at 150 mm

Fixed Point On Concrete - MFP-L Fixed Point Metric Connection Options

MFP-L no sound insulation

MFP-L fixed point set with M20 connection	
1x MFP-L fixed point pipe ring	
	See table below
1x MFP-GP M20 base plate	257001
1x AM20x1000 threaded rod	216425
2x HST3 M12x105 30/10 stud anchor	2105718

MFP-L fixed point pipe rings

MFP-L fixed point pipe rings	
MFP-L NW15 M2O	313223
MFP-L NW20 M2O	313224
MFP-L NW25 M20	313225
MFP-L NW32 M20	313226
MFP-L NW40 M20	313227
MFP-L NW50 M20	313228
MFP-L NW68/72 M20	313229
MFP-L NW65 M20	313230
MFP-L NW80 M20	313231
MFP-L NW4" M20	313232
MFP-L NW125 M20	313233

Application description	Application	Product lines	Base material
Heating - MFP-L fixed point: metric connection boss	11	Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP-L Fixed Point With Metric Connection

Type H-FP2

- Limited to 1x DN 125 (O.D. 139.1 mm) steel pipe
- Max. axial load 2 kN at an axial distance of 150 mm
- Max. vertical load KN
- No insulation on the pipe at the fixed point

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	$\mathbf{2 1 0 5 7 1 8}$	HST3 M12×105 30/10 stud anchor	2	-
(2)	$\mathbf{2 5 7 0 0 1}$	MFP-GP M20 base plate	1	-
(3)	$\mathbf{2 1 6 4 2 5}$	AM20x1000 threaded rod	$\mathbf{1}$	Depends on distance
(4)	$\mathbf{3 1 3 2 3 3}$	MFP-L NW125 M20 fixed point pipe ring	$\mathbf{1}$	-

Application description
Heating - MFP-L fixed point: metric connection boss
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Additional capacity limits

[^2]
Fixed Point On Concrete - MFP-1a Fixed Point: Options

MFP-1a - no sound insulation

MFP-1a fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BP 20 basic set	247827
1x GR-G 1 1⁄" 1 threaded pipe	248532
2x HST3 M12x105 $30 / 10$ stud anchor	2105718

MFPI-1a sound-insulated

MFP-1a fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BPI 20 basic set	254460
1x GR-G 1 1/4" threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718

MFP-NW fixed point pipe rings

MFP-NW fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description	Application	Product lines	Base material
Heating - MFP-1a fixed point: metric connection boss	11	Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP 1a Fixed Point

Type H-FP3

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Max. axial load 3 kN at a distance of 160 mm to pipe surface
- Max. vertical load 0.0 KN
- No insulation on the pipe at the fixed point

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G $111 / 4$ " threaded pipe	1	Depends on distance
(4)	243542	MFP NW250 fixed point pipe ring	1	-

Application description
Heating - MFP-1a fixed point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line
MFP fixed points
Capacity limit
Max. 3 kN at 160 mm

Fixed Point On Concrete - MFP-1 Fixed Point Options

MFP-1 - no sound insulation

MFP-1 fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BP 20 basic set *	247827
1x GR-G 1 1/4" threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718
1x MFP-AP1 bracing set *	247829
1x AM16x1000 threaded rod	216422
1x HST3 M16x135 35/15	2105858
* MFP-BP 20 + MFP-AP1	2083241

MFPI-1 sound-insulated

MFP-1 fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BPI 20 basic set *	254460
1x GR-G 1 1/4" threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718
1x MFP-API1 bracing set *	254461
1x AM16x1000 threaded rod	216422
1x HST3 M16x135 35/15	2105858
* MFP-BPI 20 + MFP-API1	2083244

MFP-NW fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description	Application	Product lines	Base material
Heating - MFP-1 fixed point: metric connection boss		Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP-1 Fixed Point

Type H-FP4

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Max. axial load 3 kN at a distance of 1200 mm to pipe surface
- Max. vertical load 0.0 KN
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G 11/4" threaded pipe	1	Depends on distance
(4)	243542	MFP NW250 fixed point pipe ring	1	-
(5)	247829	MFP-AP1 bracing set	1	-
(6)	216422	AM16x1000 threaded rod	1	Depends on distance
(7)	2105858	HST3 M16x135 35/15 stud anchor	1	-

Application description
Heating - MFP-1 fixed point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Fixed Point On Concrete - MFP-2 Fixed Point Options

MFP-2 - no sound insulation

MFP-1a fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BP 20 basic set *	247827
1x GR-G 1 1/4" threaded pipe	248532
2x HST3 M12x105 30/10	2105718
1x MFP-AP2 bracing set *	247830
2x AM16x1000 threaded rod	216422
2x HST3 M16x135 35/15	2105858
* MFP-BP 20 + MFP-AP2	2083242

MFPI-2 sound-insulated

MFP-1a fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BPI 20 basic set *	254460
1x GR-G 1 1/4" threaded pipe	248532
2x HST3 M12x105 30/10	2105718
1x MFP-API2 bracing set *	254462
2x AM16x1000 threaded rod	216422
2x HST3 M16x135 35/15	2105858
* MFP-BPI 20 + MFP-API2	2083245

MFP-NW fixed point pipe rings

MFP-NW fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description	Application	Product lines	Base material
Heating - MFP-2 fixed point: metric connection boss	11	Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP-2 Fixed Point

Type H-FP5

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Max. axial load 10 kN at a distance of 1200 mm to pipe surface
- Max. vertical load 0.0 KN
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G 1 1⁄4" threaded pipe	1	Depends on distance
(4)	243542	MFP NW250 fixed point pipe ring	1	-
(5)	247830	MFP-AP2 bracing set	1	-
(6)	216422	AM16x1000 threaded rod	1	Depends on distance
(7)	2105859	HST3 M16x145 45/25 stud anchor	2	-

Application description
Heating - MFP-2 fixed point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Fixed Point On Concrete - MFPl-s Fixed Point Options

MFP-3 - no sound insulation

MFP-1a fixed point set	
1x MFP-NW Fixed point pipe	
ring	See table below
1x MFP-BP 16 basic set *	247826
2x GR-G 1 1/4" threaded pipe	248532
4x HST3 M12x105 30/10	2105718
1x MFP-AP3 bracing set *	247831
2x AM16x1000 threaded rod	216422
2x HST3 M20X170 -/30 stud anchor	2105891
2-3x Welded stoppers on pipe surface	
* MFP-BP 16 + MFP-AP3	2083243

MFPI-3 sound-insulated

MFP-1a fixed point set	
1x MFP-NW fixed point pipe	
ring	See table below
1x MFP-BPI 16 basic set *	254459
2x GR-G 1 1/4" threaded pipe	248532
4x HST3 M12x105 30/10	2105718
1x MFP-API3 bracing set *	254463
2x AM16x1000 threaded rod	216422
2x HST3 M20X170 -/30 stud anchor	2105891
2-3x Welded stoppers on pipe surface	
* MFP-BPI 16 + MFP-API3	2083246

MFP-NW fixed point pipe rings

MFP-NW fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description	Application	Product lines	Base material
Heating - MFP-3 fixed point	11	Fixed point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application			

Heating Applications - MFP-3 Fixed Point

Type H-FP6

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Max. axial load 10 kN at a distance of 1200 mm
- Max. vertical load 0.0 KN
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	4	-
(2)	247826	MFP-BP 16 basic set	1	-
(3)	248532	GR-G 1 ¼" threaded pipe	2	Depends on distance
(4)	243542	MFP NW250 fixed point pipe ring	1	-
(5)	247831	MFP-AP3 bracing set	1	-
(6)	216422	AM16x1000 threaded rod	2	Depends on distance
(7)	2105891	HST3 M20X170-/30 stud anchor	2	-
(8)	No item number	Welded stoppers on pipe surface	$2-3 x$	

Application description
Heating - MFP-3 fixed point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Fixed Point On Steel -
 MFP-2 Fixed Point Incl. Sub-structure Options

Application description	Application	Product lines	Base material
Heating - MFP-2 fixed point: metric connection boss	11	Fixed point sets	Steel
General comments		MQ System	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Threaded parts	

Heating Applications - MFP-2 Fixed Point On Steel Structure

Type H-FP7

- Limited to 1x DN 250 (O.D. 273.0 mm) steel pipe
- Max. axial load 3.05 kN at a axial distance of 500 mm
- No insulation on the pipe at the fixed point

Additional capacity limits
This particular case is a very complex, but relatively common structure. Every individual part is influenced by several factors which can vary. Proper evaluation must be done based on the set of loads to which each individual part is subjected, compared to their loading capacity limits.
The most common limiting factors are the brace to channel connector, the channel itself and slippage at the beam clamps.

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	369603	MQ-41 D 3 m channel	2	Depends on span
(2)	369685	MQZ-E41 channel end cap	12	-
(3)	369677	MQT-82-124 beam clamp	8	-
(4)	373797	MQ-72 3 m channel	2	Depends on pipe size
(5)	369686	MQZ-E31 channel end cap	4	-
(6)	369680	MQZ-L13 square washer	8	Depends on distance
(7)	339797	AM12x1000 threaded rod	4	Approx. 250 mm
(8)	216467	M12 hexagon nut	8	-
(9)	369627	MQM-M12 wing nut	2	-
(10)	216458	M12x25 hexagon screw	2	-
(11)	369632	MQA-M16 B saddle nut	4	-
(12)	84793	M16x35 hexagon screw	4	
(13)	247827	MFP-BP 20 basic set	1	-
(14)	248532	GR-G 1 1/4" threaded pipe	1	Depends on distance
(15)	243542	MFP NW250 fixed point pipe ring	1	-
(16)	247830	MFP-AP2 bracing set	2	-
(17)	216422	AM16x1000 threaded rod	4	Depends on distance

Application description

Heating - MFP-2 fixed point with bracing on both sides

General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Steel
Product line MFP fixed points
Capacity limit

Riser Fixed Point On Concrete - Fixed Point MFP-L Imperial Connections Options

No sound insulation

Set of Fixed point MFP-L with $1 / 2{ }^{\prime \prime}$ connection	
1x MFP-L fixed point pipe ring	
MFP-L NW $151 / 2{ }^{1}$	310307
MFP-L NW $2011 / 2$ "	310308
MFP-L NW $251 / 2{ }^{1}$	310309
1x MFP-GP 1 1/2" base plate	310318
1x GR-GP $1 / 2$ " threaded pipe	56428
2x HST3 M12x105 30/10 stud anchor	2105718

Set of Fixed point MFP-L with $3 / 4$ " connection	
1x MFP-L Fixed point pipe ring	
MFP-L NW 32 3/4"	310310
MFP-L NW $403 / 4{ }^{\prime \prime}$	310311
MFP-L NW 50 3/4"	310312
MFP-L NW 68/72 3/4"	310313
MFP-L NW 65 ¹/4"	310314
MFP-L NW 80 ³/ ${ }^{\text {" }}$	310315
MFP-L NW 4"3/4"	310316
MFP-L NW 125 3/4"	310317
1x MFP-GP 3/4" base plate	310319
1x GR-G $3 / 4$ " threaded pipe	56429
2x HST3 M12x105 30/10 stud anchor	2105718

Fixed point pipe ring

Application description	Application	Product lines	Base material
Heating - Riser Fixed Point		Fixed Point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Anchors	

Heating Applications - Riser Fixed Point MFP-L

Type H-RFP1

- Limited to max. $1 \times$ DN 125 (O.D. 139.7 mm) steel pipe
- Max. axial load 2.00 kN at an axial distance of 150 mm
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	310319	MFP-GP 3/4" base plate	1	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(3)	56429	GR-G 3/4" threaded pipe	1	0.095
(4)	310317	MFP-L NW 125 ³/4	1	-

Application description
Heating - MFP-L Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Product line
MFP-L fixed points
Capacity limit
Max. 2 kN in 150 mm

Riser Fixed Point On Concrete - Fixed Point MFP-L Metric Connections Options

No sound insulation

Set of Fixed point MFP-L with M20 connection	
1x MFP-L Fixed point pipe	
ring	See table below
1x MFP-GP M20 base plate	257001
1x AM20x1000 threaded rod	216425
2x HST3 M12x105 30/10 stud anchor	2105718

MFP-L Fixed point pipe rings

MFP-L fixed point pipe rings	
MFP-L NW15 M20	313223
MFP-L NW20 M20	313224
MFP-L NW25 M20	313225
MFP-L NW32 M20	313226
MFP-L NW40 M20	313227
MFP-L NW50 M20	313228
MFP-L NW68/72 M20	313229
MFP-L NW65 M20	313230
MFP-L NW80 M20	313231
MFP-L NW4" M20	313232
MFP-L NW125 M20	313233

Fixed point pipe ring

Application description	Application	Product lines	Base material
Heating - Riser Fixed Point		Fixed Point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Anchors	

Heating Applications - Riser Fixed Point MFP-L

Type H-RFP2

- Limited to max. $1 \times$ DN 125 (O.D. 139.7 mm) steel pipe
- Max. axial load 2.00 kN at an axial distance of 150 mm
- No insulation on the pipe at the fixed point

(4)

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	257001	MFP-GP M20 base plate	1	-
(2)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(3)	216425	AM20x1000 threaded rod	1	0.1
(4)	313233	MFP-L NW125 M20	1	-

Application description
Heating - MFP-L Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line
MFP-L fixed points
Capacity limit
Max. 2 kN in 150 mm

Riser Fixed Point On Concrete -
 Fixed Point MFP-1a Options

MFP-1a - no sound insulation
MFP-NW Fixed point pipe rings

Set of Fixed point MFP-1a		
1x MFP-NW Fixed point pipe		
ring	See separated table	
1x MFP-BP 20 basic set	247827	
1x GR-G 1 1/4" threaded pipe	248532	
2x HST3 M12x105 30/10 stud anchor	2105718	

MFPI-1a sound insulated

Set of Fixed point MFP-1a	
1x MFP-NW Fixed point pipe	
ring See separ	ted table
1x MFP-BPI 20 basic set	254460
1x GR-G $11 / 4$ " threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718

MFP-NW Fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description
Heating - Riser Fixed Point
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Riser Fixed Point MFP-1a

Type H-RFP3

- Limited to max. $1 \times$ DN 80 (O.D. 88.9 mm) this case e.g. steel pipe 11 m long without expansion impact
- Max. axial load 1.92 kN at a surface distance of 250 mm
- No insulation on the pipe at the fixed point

(4)

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G $11 / 4$ " threaded pipe	1	0.148
(4)	243532	MFP NW80 fixed point pipe ring	1	-

Application description
Heating - MFP-1a Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Base material Concrete
Product line MFP fixed points

Capacity limit Max. 1.92 kN in 250 mm

Riser Fixed Point On Concrete -
 Fixed Point MFP-1 Options

MFP-1a - no sound insulation

Set of Fixed point MFP-1	
1x MFP-NW Fixed point pipe	
ring See sepa	ted table
1x MFP-BP 20 basic set *	247827
1x GR-G $11 / 4$ " threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718
1x MFP-AP1 bracing set *	247829
1x AM16x1000 threaded rod	216422
1x HST3 M16x135 45/15 stud anchor	2105858
* MFP-BP 20 + MFP-AP1	2083241

MFP-NW Fixed point pipe rings

MFP-NW Fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP $28 / 30$	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

MFPI-1a sound insulated

Set of Fixed point MFP-1	
1x MFP-NW Fixed point pipe	
ring See separ	ed table
1x MFP-BPI 20 basic set *	254460
1x GR-G $11 / 4$ " threaded pipe	248532
2x HST3 M12x105 30/10 stud anchor	2105718
1x MFPI-APl1 bracing set *	254461
1x AM16x1000 threaded rod	216422
1x HST3 M16x135 45/15 stud anchor	2105858
* MFP-BPI 20 + MFP-API1	2083244

Application description	Application	Product lines	Base material
Heating - Riser Fixed Point	12	Fixed Point sets	Concrete
General comments		Threaded parts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Anchors	

Heating Applications - Riser Fixed Point MFP-1

Type H-RFP4

- Limited to max. $1 \times$ DN 80 (O.D. 88.9 mm) this case e.g. steel pipe 17.7 m long without expansion impact
- Max. axial load 3 kN at a surface distance of 1200 mm
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G 11/4" threaded pipe	1	Depends on distance
(4)	243532	MFP NW80 fixed point pipe ring	1	-
(5)	247829	MFP-AP1 bracing set	1	-
(6)	216423	AM16x2000 threaded rod	1	Depends on distance
(7)	2105859	HST3 M16x135 45/25 stud anchor	1	Depends on distance

Application description
Heating - MFP-1 Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Riser Fixed Point On Concrete -
 Fixed Point MFP-2 Options

MFP-2 - no sound insulation

Set of Fixed point MFP-2	
1x MFP-NW Fixed point pipe	
\quad See separated table	
ring	247827
1x MFP-BP 20 basic set *	248532
1x GR-G 1 1/4" threaded pipe	2105718
2x HST3 M12x105 30/10 stud anchor	247830
1x MFP-AP2 bracing set *	216422
2x AM16x1000 threaded rod	2105858
2x HST3 M16x135 45/15 stud anchor	
* MFP-BP 20 + MFP-AP2	2083242

MFP-NW Fixed point pipe rings

MFPI-2 sound insulated

Set of Fixed point MFP-2	
1x MFP-NW Fixed point pipe	
\quad See separated table	
ring	254460
1x MFP-BPI 20 basic set *	248532
1x GR-G 1 1/4" threaded pipe	2105718
2x HST3 M12x105 30/10 stud anchor	254462
1x MFP-API2 bracing set *	216422
2x AM16x1000 threaded rod	2105858
2x HST3 M16x135 45/15 stud anchor	
* MFP-BPI 20 + MFP-API2	2083245

MFP-NW Fixed point pipe rings	
MFP NW15	243521
MFP NW20	243522
MFP 28/30	243523
MFP NW25	243524
MFP NW32	243525
MFP NW40	243526
MFP NW54/56	243527
MFP NW50	243528
MFP 63/66	243529
MFP 68/72	243530
MFP NW65	243531
MFP NW80	243532
MFP NW100	243533
MFP NW4"	243534
MFP NW 125/127	243535
MFP NW125	243536
MFP NW150	243537
MFP NW6"	243538
MFP 193/200	243539
MFP NW 200	243540
MFP 244/250	243541
MFP NW250	243542

Application description
Heating - Riser Fixed Point
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Heating Applications - Riser Fixed Point MFP-2

Type H-RFP5

- Limited to max. $1 \times$ DN 80 (O.D. 88.9 mm) steel pipe 59 m long without expansion impact
- Max. axial load 10 kN at a surface distance of 1200 mm
- No insulation on the pipe at the fixed point

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x105 30/10 stud anchor	2	-
(2)	247827	MFP-BP 20 basic set	1	-
(3)	248532	GR-G 1 ¼" threaded pipe	1	Depends on distance
(4)	243532	MFP NW80 fixed point pipe ring	1	-
(5)	247830	MFP-AP2 bracing set	1	-
(6)	216422	AM16x1000 threaded rod	1	Depends on distance
(7)	2105858	HST3 M16x135 45/15 stud anchor	2	-

Application description
Heating - MFP-2 Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Riser Fixed Point On Concrete -
 Fixed Point MFP-3 Options

MFP-3 - no sound insulation

MFP-NW Fixed point pipe rings

Set of Fixed point MFP-3			
1x MFP-NW Fixed point pipe			
\quad ring	See separated table		
1x MFP-BP 16 basic set *	247826		
2x GR-G 1 1/4" threaded pipe	248532		
4x HST3 M12x105 30/10 stud anchor	2105718		
1x MFP-AP3 bracing set *	247831		
2x AM16x1000 threaded rod	216422		
2x HST3 M20X170 -/30 stud anchor	2105891		
2-3x Welded stoppers on pipe surface			
* MFP-BP 16 + MFP-AP3	2083243		

Heating Applications - Riser Fixed Point MFP-3

Type H-RFP8

- Limited to max. $1 \times$ DN 80 (O.D. 88.9 mm) this case e.g. steel pipe 1 18 m long without expansion impact
- Max. axial load 20 kN at an axial distance of 1200 mm
- No insulation on the pipe at the fixed point

Additional capacity limits

Bill of materials

Reference	Item no.	Description	Piece	Length (m)
(1)	2105718	HST3 M12x 105 30/10 stud anchor	4	-
(2)	247826	MFP-BP 16 basic set	1	-
(3)	248532	GR-G $111 / 4$ threaded pipe	2	Depends on distance
(4)	243542	MFP NW250 fixed point pipe ring	1	-
(5)	247831	MFP-AP3 bracing set	1	-
(6)	216422	AM16x1000 threaded rod	2	Depends on distance
(7)	2105891	HST3 M20X170-/30 stud anchor	2	-
(8)	No item number	Welded stoppers	2-3x	

Application description
Heating - MFP-3 Riser Fixed Point
General comments

- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity limits for every single part of the application

Application

Product line
Capacity limit
Max. 20 kN in 1200 mm

Primary Heating Media Collector Bracket MIQ System Frame

Application description
Heating - Primary heating media collector bracket
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Primary Heating Media Collector Bracket -
 MIQ System Frame - Pipe Ring Connections

Application description	Application	Product lines	Base material
Heating - Primary heating media collector bracket		MIQ System	
General comments		MQ-F Saddle nuts	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Pipe rings	

Primary Heating Media Collector Bracket MiQ System Frame - Sliders / Rollers Connections

Application description
Heating - Primary heating media collector bracket
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Primary Heating Media Collector Bracket MIQ System Frame - Pipe Shoe Connections

Application description	Application	Product lines	Base material
Heating - Primary heating media collector bracket		MIQ System	
General comments		MI System	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		Pipe shoes	

Primary Heating Media Colleotor Bracket -
 MIQ System Frame - U-bolt Oonnections

Application description	Application	Product lines	Base material
Heating - Primary heating media collector bracket		MIQ System	
General comments		MI System	
- Application subject to thermal expansion impact, no seismic, no fatigue, no high/low temperature impact - Loading and load impact must always be compared with 3D capacity limits for every single part of the application		U-bolts	

Heating

Primary Heating Media Oolleotor Bracket MQ System Frame - Wall to Wall cirder

Wall to wall application BOM for entire solution without pipe rings, pipe ring connections and sliders / rollers
Girder (channel)
2x MIQ-90 3m...m girder 2119866
Base material connector
2x MIQC-C90 base connector (incl. connectivity parts)
on one side screw are not used 2120144 Anchors
8x HST3-R M16x135 35/15 stud anchor 2105876

Application description
Heating - Primary heating media collector bracket
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Primary Heating Media Collector Bracket -
 MI System Frame

Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the
applicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Page 261 Hilti instructions for use, within the application limits specified in the Hilti technical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation

Primary Heating Media Collector Bracket -
 MQ System Frame

Application description
Heating - Primary heating media collector bracket
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

Various Other Applications - MQ System Frame

Application description
Heating - Various other applications
General comments
- Application subject to thermal expansion impact, no seismic, no fatigue,
no high/low temperature impact
- Loading and load impact must always be compared with 3D capacity
limits for every single part of the application

[^0]: Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with the

[^1]: in 4 postions possible).

[^2]: Hilti strongly advises customers to verify the respective product application for the intended use by consulting a structural engineer and making the necessary calculations to ensure compliance with th
 Page 226 pplicable norms and standards. Failure to consult and heed the advice of a structural engineer will free Hilti from any liability. It is essential that the product is used strictly in accordance with the applicable Hilti instructions for use, within the application limits specified in the Hiltitechnical data sheets, technical specifications and supporting product literature, and that the relevant application limits are not exceeded at any time. All rights reserved by Hilti Corporation. Duplication, utilization and/or publication of drawings contained in this manual are not permitted unless expressly agreed by Hilti Corporation.

